

    
      
          
            
  
Welcome to the OTSLM documentation!

This documentation contains additional information about using the
OTSLM toolbox.
This documentation is split into 3 main parts: Getting Started,
Examples and Packages.
You can find this documentation at https://otslm.readthedocs.io/,
a PDF version can be downloaded from the
GitHub release page [https://github.com/ilent2/otslm/releases],
the raw reST files are provided in the docs directory
or (if you installed OTSLM using a Matlab
toolbox file) you can find a version of this documentation under
Suplemental Software on the home page of the Matlab help browser.


Documentation Contents:


	Introduction
	License

	Contributing

	Contact us





	Getting Started
	Installation

	Exploring the toolbox with the GUI

	Using the toolbox functions





	Examples
	Simple Beams

	Advanced Beams

	Gratings and Lens LiveScript

	Using the GPU

	Accessing OTSLM from LabVIEW





	Packages
	simple Package

	iter Package

	tools Package

	utils Package

	ui Package





	Documentation terms of use






Todo

document parameters



(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/otslm/checkouts/stable/+otslm/+utils:docstring of +otslm.+utils.LookupTable.valueMinimised, line 8.)





          

      

      

    

  

    
      
          
            
  
Introduction

OTSLM is a set of Matlab functions and graphical user interface for
generating patterns for phase and amplitude spatial light modulators
(SLMs) such as the digital micromirror device (DMD) and liquid crystal
type device. The focus of this toolbox is on patterns for optical
tweezers systems but the same functions can probably be used in other
applications where amplitude or phase control of light is required.

In the initial release we include functions our group currently uses or
is interested in using, but we hope that others will also contribute
codes for patterns they use in research publications. If you would like
to contribute patterns, we would love to hear from you, see the
Contributing section.

This documentation provides an overview of the toolbox functions and
classes, including examples, typical output, and function/class
reference pages which can be used to extend the toolbox for your own needs.
The documentation is split into three parts: a Getting Started
section, Examples and Packages reference section.
The examples section contains additional details about specific tasks
the toolbox can be used for.
Additional example code is provided as part of the toolbox in the
examples directory.
The packages section contains information about each of the packages.
This includes function/class reference pages and example output.
Most toolbox functions/classes are documented in the source code,
and can be viewed by typing help <function-name> at the Matlab prompt.
The documentation includes the rendered function/class help and
additional content such as examples and typical output.

The toolbox is a work in progress. It is likely, at least in the early
versions, the functions will move around, change names and behaviour.
Some functions still lack documentation and might be a bit unstable.
Comments and suggestions welcome.

To get started using the toolbox, take a look at the
Getting Started section.


License

If you publish work using this toolbox, please cite it as


I. C. D. Lenton, A. B. Stilgoe, T. A. Nieminen, H.
Rubinsztein-Dunlop, “OTSLM toolbox for structured light methods”,
Computer Physics Communications, 2019.




This version of the code is licensed under the GNU GPLv3. Parts of the
toolbox incorporate third party open source code, see the documentation,
thirdparty folder and code for details about licensing of these parts.
Further details can be found in LICENSE.md. If you would like to use the
toolbox for something not covered by the license, please contact us.




Contributing

If you would like to contribute a feature, report a bug or request we
add something to the toolbox, the easiest way is by creating a new
issue on the OTSLM GitHub
page [https://github.com/ilent2/otslm/issues].

If you have code you would like to submit, fork the repository, add the
code and open a new issue. This method is preferable to pasting the code
in the issue or sending it to us via email since your contribution
details will remain attached to the commit you send (tracking
authorship).




Contact us

The best person to contact for inquiries about the toolbox or licensing
is Isaac Lenton







          

      

      

    

  

    
      
          
            
  
Getting Started

This page will guide you through getting started with OTSLM. This page
is split into three sections: installation, using
the GUIs, and writing
functions with the toolbox.


Installation

To run OTSLM you need to download the toolbox files and have a
recent version of Matlab installed (we tested OTSLM with Matlab 2018a).
There are a couple of ways to get OTSLM.  You can download one of the
Matlab toolbox files (with the .mltbx extension), you can download
a .zip archive containing the source code,
or you can clone the GitHub repository.
The advantage of cloning the GitHub repository is you can easily switch
between different versions of the toolbox or download the most recent
changes/improvements to the toolbox.
There are a range of online tutorials for getting started with
git and GitHub, for example
https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners.


Using a .mltbx file

You can download the latest stable release of OTSLM from either the
GitHub release page [https://github.com/ilent2/otslm/releases]
or the Mathworks File Exchange [https://au.mathworks.com/matlabcentral/fileexchange?q=otslm] (you can also access the File Exchange from within
Matlab via the Home > Add-ons > Get Add-ons button).
Simply download the appropriate .mltbx file for the relevant version.
Once downloaded, execute the file and follow the instructions to install
the toolbox.

To change/remove the toolbox, go to Home > Add-ons
> Manage Add-ons and select the toolbox you would like to configure.




Using a .zip or cloning the repository

The latest version of OTSLM can be downloaded from the
OTSLM GitHub page [https://github.com/ilent2/otslm].
Simply click the Clone or Download button and select your
preferred method of download.
If you are cloning the repository you can checkout different
tags to select the desired release.
Alternatively, for a specific version, navigate to the
release page [https://github.com/ilent2/otslm/releases]
and select the .zip file for the desired release.

To install OTSLM, download the latest version of the toolbox to your
computer, if you downloaded a .zip file, extract the files to
your computer.

Once downloaded, most of the toolbox functionality is ready to use. To
start exploring the functionality of the toolbox immediately, you can
run the examples or launch one of the GUIs in the +otslm/+ui
directory. However, for writing your own code, you will probably want to
add the toolbox to the Matlab path. To do this, simply run

addpath('/path/to/toolbox/otslm');





Replace the path with the path you placed the downloaded toolbox in. The
folder must contain the +otslm directory and the docs directory.
If you downloaded the latest toolbox from GitHub, the final part of the
pathname will either be the repository path (if you used git clone)
or something like otslm-master (if you downloaded a ZIP). The above
line can be added to the start of each of your files or for a more
permanent solution you can add it to the Matlab startup
script [https://au.mathworks.com/help/matlab/ref/startup.html].




Post installation

To check that otslm was found, run the following command and verify
it displays the contents of the +otslm/Contents.m file

help otslm





If you have multiple versions of otslm downloaded, you may want to
check which version is currently being used.
The following command can be used to check which toolbox
is being used

what otslm





OTSLM is implemented as a Matlab package, all the core functionality is
contained within the +otslm directory and can be accessed by adding
the folder containing +otslm to the path and prefixing the contained
functions with otslm..
For example, to access the linear function in
the simple sub-package, you would use

im = otslm.simple.linear([10, 10], 3);





Some functionality requires additional components. You can choose to
install these now or later.


	Optical Tweezers Toolbox [https://github.com/ilent2/ott] (1.5.1
or newer)


	Python (2.7 or newer)


	numpy (tested on 1.13.3)


	theano (tested on 0.9)


	scipy (tested on 1.0)


	pyfftw (optional, for Fourier transform)






	Red Tweezers [https://doi.org/10.1016/j.cpc.2013.08.008]


	Specific Matlab toolboxes:


	Optimization Toolbox


	Signal Processing Toolbox


	Neural Network Toolbox


	Symbolic Math Toolbox


	Image Processing Toolbox


	Instrument Control Toolbox


	Parallel Computing Toolbox


	Image Acquisition Toolbox






	Matlab MEX compatible C++ compiler




In some cases it is possible to re-write functions to avoid using
specific Matlab toolboxes. If you encounter difficultly using a function
because of a missing Matlab toolbox, let us know and we may be able to
help.






Exploring the toolbox with the GUI

The toolbox includes a graphical user interface (GUI) for many of the
core functions. The user interface allows you to explore the
functionality of the toolbox without writing a single line of code.
The GUIs can be accessed by running the OTSLM Launcher application.
The launcher can be found in the Apps menu (if OTSLM was installed
using a .mltbx file), or run from the file explorer by navigating
to the +otslm/+ui directory and running Launcher.mlapp.
If you have already added OTSLM to the path, you can also start the
launcher by running the following command in the command window

otslm.ui.Launcher





If everything is installed correctly, the launcher should appear,
as depicted in Fig. 1.
The window is split into 4 sections: a description of the toolbox, a
list of GUI categories, a list of applications, and a description about
the selected application. Once you select an application, click Launch.


[image: Launcher]
Fig. 1 Overview of the Launcher application.



The output from various applications can either be saved to the Matlab
workspace or sent to a otslm.utils.Showable device
(if one has already been configured).
Applications which generate a pattern have an option to enter a Matlab
variable name. When the pattern is generated, the image is saved to the
current Matlab workspace. Applications which take patterns as inputs (for
example, combine and finalize) can use the patterns produced by another
window by simply specifying the same variable name, for example
see Fig. 2.


[image: Dataflow in GUI]
Fig. 2 Illustration showing dataflow between the GUI windows.
A linear grating is generated with the name outLinear,
when the pattern is ready it is saved to the Matlab workspace (1).
This pattern can then be used by other interfaces, for example
(2) shows the same variable name being used as an input to the
Dither application.



If an app produces an error or warning, these will be displayed in the
Matlab console.

The example applications show how the user interfaces can be combined to
achieve a particular goal. To get started using the GUI, work through
these examples. For additional information, see the
ui Package documentation.

It is possible to customize these interfaces, however creating custom
user interfaces in Matlab is rather time consuming and involves a lot of
code duplication. Instead, we recommend using live scripts, see the
Gratings and Lens LiveScript example. It is also
possible to create a graphical user interfaces in LabVIEW,
for details see Accessing OTSLM from LabVIEW.




Using the toolbox functions

The toolbox functions and classes are organised into four main packages:
simple Package, iter Package, tools Package
and utils Package. To use these functions, either prefix the function
with otslm and the package name

im = otslm.simple.linear([10, 10], 3);





import a specific function

import otslm.simple.linear;
im = linear([10, 10], 3);





or import the entire package

import otslm.simple.*;
im1 = linear([10, 10], 3);
im2 = spherical([10, 10], 3);





Most of the toolbox functions produce/operate on 2-D matrices. The type
of values in these matrices depends on the method, but values will
typically be logical, double or complex. Complex matrices are typically
used when the complex amplitude of the light field needs to be
represented. Double matrices are used for both amplitude and phase
patterns. Logicals are returned when the function could be used as a
mask, for instance, otslm.simple.aperture() returns a
logical array by default.

For phase patterns, there are three type of value ranges: [0, 1),
[0, 2*pi) and device specific colour range (after applying a lookup
table to the pattern). Most of the otslm.simple functions return
phase patterns between 0 and 1 or patterns which can be converted to
this range using mod(pattern, 1). To convert these patterns to the
[0, 2*pi) range or apply a specific colour-map, you can use the
otslm.tools.finalize() function.

To get started using the toolbox functions for beam shaping, take a look
at the Beams and Advanced Beams examples.
The examples directory provides examples of other toolbox
functions and how they can be used.

To get help on toolbox functions or classes, type help followed by
the OTSLM package, function, class or method name. For example, to get help
on the otslm.simple package, type:

help otslm.simple





or to get help on the run method in the otslm.iter.DirectSearch
class use

help otslm.iter.DirectSearch/run





For more extensive help, refer to this documentation.







          

      

      

    

  

    
      
          
            
  
Examples

The toolbox has a range of examples in the examples directory.
Additional information is provided here for some of these examples.



	Simple Beams

	Advanced Beams

	Gratings and Lens LiveScript

	Using the GPU

	Accessing OTSLM from LabVIEW









          

      

      

    

  

    
      
          
            
  
Simple Beams

This page describes the examples.simple_beams example. This example
demonstrates some of the simpler hologram generation functions in the
toolbox.


Contents


	Initial setup


	Exploring different simple beams


	Zero phase pattern


	Linear grating


	Spherical grating


	LG Beam


	HG Beam


	Sinc pattern


	Axicon lens


	Cubic lens











Initial setup

The example starts by adding the OTSLM toolbox to the path. The
example script is in the otslm-directory/examples/ directory,
allowing us to specify the otslm-directory relative to the current
directory with ../

addpath('../');





We define a couple of properties for the patterns, starting with the
size of the patterns [512, 512] and the incident illumination we
will use for the simulation.

sz = [512, 512];

% incident = [];        % Incident beam (use default in visualize)
incident = otslm.simple.gaussian(sz, 150);  % Incident beam (gaussian)
% incident = ones(sz);  % Incident beam (use uniform illumination)





We use otslm.simple.gaussian() to create a Gaussian profile
for the incident illumination.
Alternatively we could just us the Matlab ones() function to
create a uniform incident illumination or load a gray-scale image from
a file.

The last part of the setup section defines a couple of functions for
visualising the SLM patterns in the far-field.

o = 50;              % Region of interest size in output
padding = 500;        % Padding for FFT
zoom = @(im) im(round(size(im, 1)/2)+(-o:o), round(size(im, 2)/2)+(-o:o));
visualize = @(pattern) zoom(abs(otslm.tools.visualise(pattern, ...
    'method', 'fft', 'padding', padding, 'incident', incident)).^2);





This defines a function visualize which takes a pattern as input,
uses the otslm.tools.visualise() method to simulate what the
far-field looks like using the fast Fourier transform method, calculates the
absolute value squared (converts from the complex output of
otslm.tools.visualise() to an intensity image which we can plot with
imagesc()) and zooms into a region of interest in the far-field image.
This piece of code isn’t really part of the example, it is only included
to make the following sections more succinct. You could replace the use
of the visualize function in the sections below with a single call
the otslm.tools.visualise() and manually zoom into the resulting
image.




Exploring different simple beams

The remainder of the example explores different beams. This section
describes each beam phase pattern and shows the expected output.


Zero phase pattern

When a constant (or zero) phase pattern is placed on the SLM, the resulting
beam is unmodified (except for a constant phase factor which doesn’t
affect the resulting intensity).
When we visualise this beam, we should
see the Fourier transform of the incident beam. If our incident beam is
a Gaussian, we should see a Gaussian-like spot in the far-field, as
shown in Fig. 3.

pattern = zeros(sz);
pattern = otslm.tools.finalize(pattern);
subplot(1, 2, 1), imagesc(pattern);
subplot(1, 2, 2), imagesc(visualize(pattern));






[image: zero phase shift]
Fig. 3 A phase pattern with zero phase shift (left) and the resulting
unchanged far-field intensity (right).



This example includes a call to otslm.tools.finalize(), for the zero
phase pattern this call is redundant. If you changed the pattern to a
constant uniform phase shift, for example 10.5*ones(sz),
otslm.tools.finalize() would apply mod(pattern, 1)*2*pi to the
pattern to ensure the pattern is between 0 and 2pi.




Linear grating

The linear grating can be used for shifting the focus of a beam in the
far-field. The linear grating acts like a tilted mirror, on the side of
the mirror where the path length is reduced the relative phase is less
than zero, on the side of the mirror where the path length is increased
the phase difference is larger. To create a linear grating you can use
the otslm.simple.linear() function. This function has two required
arguments, the pattern size and the grating spacing. The grating spacing
is proportional to the distance the beam is displaced in the far-field
and inversely proportional to the gradient of the pattern.
Fig. 4 shows a typical output.

pattern = otslm.simple.linear(sz, 40, 'angle_deg', 45);
pattern = otslm.tools.finalize(pattern);
subplot(1, 2, 1), imagesc(pattern);
subplot(1, 2, 2), imagesc(visualize(pattern));






[image: linear grating to shift beam focus]
Fig. 4 A blazed grating generated using otslm.simple.linear()
and and the resulting far-field intensity pattern.



The otslm.simple.linear() function outputs a non-modulated pattern,
as shown in Fig. 5.
This makes it easier to combine the pattern with other
patterns without introducing artefacts from applying
mod(pattern, 1). Passing the pattern to otslm.tools.finalize()
applies the modulo to the pattern producing the recognisable blazed
grating pattern.


[image: raw output from otslm.simple.linear]
Fig. 5 Un-modulated output from otslm.simple.linear().






Spherical grating

To shift the beam focus along the axial direction we can use a lens
function. The toolbox includes a couple of simple
Lens functions, here we use
otslm.simple.spherical(). This function takes two required arguments:
the pattern size and lens radius. Values outside the lens radius are
invalid, we can choose how these values are represented using the
background optional argument, in this case we choose to replace
these values with a checkerboard pattern. The checkerboard pattern
diffracts light to high angles (outside the range of the cropping in the
visualize method).

By default, the spherical lens has a height of 1.
We can scale the height by multiplying the output by the desired scale,
this will scale the lens and the background pattern.
To avoid applying the scaling to the background pattern we can
use the scale optional argument.
Typical output is shown in Fig. 6.

pattern = otslm.simple.spherical(sz, 200, 'scale', 5, ...
    'background', 'checkerboard');
pattern = otslm.tools.finalize(pattern);
subplot(1, 2, 1), imagesc(pattern);
subplot(1, 2, 2), imagesc(visualize(pattern));






[image: spherical lens output]
Fig. 6 Typical output and far-field intensity from the
otslm.simple.spherical() function.
The output has been modulated to produce the recognisable
Fresnel-style lens pattern.



The output of otslm.simple.spherical() is non-modulated, similar to
otslm.simple.linear() described above. Only when
otslm.tools.finalize`() is applied does the pattern look like a
Fresnel lens pattern.




LG Beam

The toolbox provides methods for generating the amplitude and phase
patterns for LG beams. To calculate the phase profile for an LG beam, we
can use otslm.simple.lgmode(). This function takes as inputs the
pattern size, azimuthal and radial modes and an optional scaling factor
for the radius of the pattern.
Typical output is shown in Fig. 7.

amode = 3;  % Azimuthal mode
rmode = 2;  % Radial mode
pattern = otslm.simple.lgmode(sz, amode, rmode, 'radius', 50);
pattern = otslm.tools.finalize(pattern);
subplot(1, 2, 1), imagesc(pattern);
subplot(1, 2, 2), imagesc(visualize(pattern));






[image: lg beam output]
Fig. 7 Example output from otslm.simple.lgmode().



In order to generate a pure LG beam we need to be able to control both
the amplitude and phase of the light. This can be achieved using
separate devices for the amplitude and phase modulator or by mixing the
amplitude pattern into the phase, as is described in the
Advanced Beams example.




HG Beam

Amplitude and phase patterns can be calculated using the
otslm.simple.hgmode() function.
The output from this function is shown in Fig. 8.
This function takes as input the
pattern size and the two mode indices. There is also an optional
scale parameter for scaling the pattern. As with LG beams,
generation of pure HG beams requires control of both the phase and
amplitude of the light, see the Advanced Beams example for
more details.

pattern = otslm.simple.hgmode(sz, 3, 2, 'scale', 70);
pattern = otslm.tools.finalize(pattern);
subplot(1, 2, 1), imagesc(pattern);
subplot(1, 2, 2), imagesc(visualize(pattern));






[image: hg beam]
Fig. 8 Phase pattern (left) generated using the otslm.simple.hgmode()
method and the corresponding simulated far-field (right).
The simulated far-field doesn’t have any amplitude correction,
leading to a non-pure HG beam output.






Sinc pattern

A sinc amplitude pattern can be used to generate a line-shaped focal
spot in the far-field. For phase-only SLMs, we need to encode the
amplitude in the phase pattern, this can be achieved by mixing the
pattern with a second phase pattern (as described in Advanced Beams),
or for 1-D patterns we can encode the
amplitude into the second dimension of the SLM (similar to Roichman and
Grier, Opt. Lett. 31, 1675-1677
(2006) [https://doi.org/10.1364/OL.31.001675]). In this example, we
show the latter.

First we create the sinc profile using the otslm.simple.sinc()
function. This function takes two required arguments, pattern size and
the sinc radius. The function can generate both 1-dimensional and
2-dimensional sinc patterns, but for the 1-D encoding method we need a
1-dimensional pattern, as shown in Fig. 9.

radius = 50;
sinc = otslm.simple.sinc(sz, 50, 'type', '1d');






[image: raw sinc pattern]
Fig. 9 1-dimensional sinc pattern output from otslm.simple.sinc().



To encode the 1-dimensional pattern into the second dimension of the SLM
we can use otslm.tools.encode1d(). This method takes a 2-D
amplitude image, the amplitude should be constant in one direction and
variable in the other direction. For the above image, the amplitude is
constant in the vertical direction and variable in the horizontal
direction. The method determines which pixels have a value greater than
the location of the pixel in the vertical direction. Pixels within this
range are assigned the phase of the pattern (0 for positive amplitude,
0.5 for negative amplitudes). Pixels outside this region should be
assigned another value, such as a checkerboard pattern. The encode
method also takes an optional argument to scale the pattern by, this can
be thought of as the ratio of pattern amplitude and device height.

[pattern, assigned] = otslm.tools.encode1d(sinc, 'scale', 200);

% Apply a checkerboard to unassigned regions
checker = otslm.simple.checkerboard(sz);
pattern(~assigned) = checker(~assigned);





We can then finalize and visualise our pattern to produce
Fig. 10.

pattern = otslm.tools.finalize(pattern);
subplot(1, 2, 1), imagesc(pattern);
subplot(1, 2, 2), imagesc(visualize(pattern));






[image: sinc pattern]
Fig. 10 Sinc pattern encoded with otslm.tools.encode1d().






Axicon lens

An axicon (cone shaped) lens can be useful for creating
Bessel [https://en.wikipedia.org/wiki/Bessel_beam]-like beams in the
near-field. In the far-field, the light will have a ring-shaped profile,
while in the near-field the light should have a Bessel-like profile. It
is also possible to combine the axicon lens with an azimuthal
gradient to generate Bessel-like beams with angular momentum.
Example output is shown in Fig. 11.

radius = 50;
pattern = otslm.simple.axicon(sz, -1/radius);
pattern = otslm.tools.finalize(pattern);
subplot(1, 2, 1), imagesc(pattern);
subplot(1, 2, 2), imagesc(visualize(pattern));






[image: axicon pattern]
Fig. 11 Axicon pattern (left) and simulated far-field (right).



To see the Bessel-shaped profile, we need to look at the near-field. We
can use the otslm.tools.visualise()
method with a z offset to view
the near-field of the axicon, as shown in
Fig. 12.

im1 = otslm.tools.visualise(pattern, 'method', 'fft', 'trim_padding', true, 'z', 50000);
im2 = otslm.tools.visualise(pattern, 'method', 'fft', 'trim_padding', true, 'z', 70000);
im3 = otslm.tools.visualise(pattern, 'method', 'fft', 'trim_padding', true, 'z', 90000);
figure();
subplot(1, 3, 1), imagesc(zoom(abs(im1).^2)), axis image;
subplot(1, 3, 2), imagesc(zoom(abs(im2).^2)), axis image;
subplot(1, 3, 3), imagesc(zoom(abs(im3).^2)), axis image;






[image: axicon nearfield pattern]
Fig. 12 Visualisation of the near-field of the axicon pattern
using otslm.tools.visualise() with three different
axial offsets.






Cubic lens

The cubic lens pattern otslm.simple.cubic()
can be used to create airy
beams [https://en.wikipedia.org/wiki/Airy_beam].
Fig. 13 shows example output.

pattern = otslm.simple.cubic(sz);
pattern = otslm.tools.finalize(pattern);
subplot(1, 2, 1), imagesc(pattern);
subplot(1, 2, 2), imagesc(visualize(pattern));






[image: axicon nearfield pattern]
Fig. 13 Example output using otslm.simple.cubic().











          

      

      

    

  

    
      
          
            
  
Advanced Beams

This page describes the examples.advanced_beams example.
This example
demonstrates some of the more complex hologram generation capabilities
in the toolbox including: combining multiple holograms, shaping the
amplitude with a phase-only device, iterative algorithms, and binary
amplitude patterns.


Note

Many of the images in this documentation include checkerboard
patterns. The checkerboard pattern should have a width of 1 pixel to
scatter light to high angles, however the lower resolution images shown
in the documentation appear to have a courser checkerboard pattern as a
result of a Moiré/aliasing effect. To use these patterns, we recommend
generating higher resolution versions using the toolbox.




Contents


	Initial setup


	Amplitude control with a phase device


	Creating a HG beam


	Creating a Bessel beam






	Combining patterns


	Adding phase patterns


	Superposition of beams


	Arrays of patterns


	Selecting regions of interest






	Gerchberg-Saxton


	Creating patterns for the DMD







Initial setup

The start of the script defines parameters and functions for visualising
the far-field of the SLM. This is mostly the same as the initial setup
in the Beams example.
Some of the advanced
beams include a beam amplitude correction term to compensate for the
non-uniform illumination of the pattern from the incident beam. The beam
correction term is defined as

beamCorrection = 1.0 - incident + 0.5;
beamCorrection(beamCorrection > 1.0) = 1.0;








Amplitude control with a phase device

In the LG Beam and
HG Beam
examples in examples.simple_beams
we noted how in order to create pure LG or HG
beams we need to control both the phase and amplitude of the beam.
In the Sinc pattern example we used the
otslm.tools.encode1d() method to encode a 1-dimensional
pattern into a 2-dimensional phase pattern.
For encoding two dimensional phase patterns
we need to create a mixture of two patterns: the pattern we want to
generate and a second pattern which scatters light into another
direction.
Common choices for the second pattern include:



	a uniform pattern, which would leave light in the centre of the beam


	a checkerboard pattern, which would scatter light into large angles,
which can easily be filtered with a iris


	a linear grating to deflect light to a specific point


	another desired part of the far-field intensity profile








Creating a HG beam

To create the HG beam, we use the otslm.simple.hgmode() function we
used in the simple beams example, except this time we request both the
phase and amplitude outputs:

[pattern, amplitude] = otslm.simple.hgmode(sz, 3, 2, 'scale', 50);





To combine the phase, amplitude and beam correction factor, which
accounts for the non-uniform illumination, we can pass the amplitude
terms into otslm.tools.finalize():

pattern = otslm.tools.finalize(pattern, ...
    'amplitude', beamCorrection.*abs(amplitude));





The finalize method generates a phase mask that is a mixture of the
desired phase pattern and a checkerboard pattern depending on the
amplitude. Internally, the method implements:

background = otslm.simple.checkerboard(size(pattern), ...
    'value', [-1, 1]);

% This ratio depends on the background level
% Amplitude must be between -1 and 1
mixratio = 2/pi*acos(abs(amplitude));

% Add the amplitude and mix with the background
pattern = pattern + angle(amplitude)/(2*pi)+0.5;
pattern = pattern + mixratio.*angle(background)/(2*pi)+0.5;





The final result, shown in Fig. 14,
is something that looks a lot more like a HG beam than
the simple beams example


[image: a better hg beam]
Fig. 14 A phase pattern (left) to generate a HG beam in the far-field (right).
This pattern accounts for non-uniform incident illumination.






Creating a Bessel beam

A bessel-like beam can be created in the far-field of the SLM by
creating a annular ring on the device. The phase of the ring can be
constant for Bessel beams without angular momentum, or an azimuthal
phase can be added for Bessel beams with angular momentum. To create the
Bessel beam, we need a ring with a finite power and infinitely small
thickness. This is difficult to achieve, so instead it is better to
create a ring with a finite thickness, for this we can use the
otslm.simple.aperture() function to create a ring. We can replace the
regions outside the aperture with a checkerboard pattern to scatter the
light to high angles.
Example output is shown in Fig. 15.

pattern = otslm.simple.aperture(sz, [ 100, 110 ], 'shape', 'ring');

% Coorect for amplitude of beam
pattern = pattern .* beamCorrection;

% Finalize pattern
pattern = otslm.tools.finalize(zeros(sz), 'amplitude', pattern);






[image: a better hg beam]
Fig. 15 A bessel-like beam generated using a finite thickness ring.
A checkerboard pattern is used to scatter unwanted light away from
the desired beam.








Combining patterns

There are multiple methods for combining beams. The phases can be added
or multiplied or the complex amplitudes can be added or multiplied.


Adding phase patterns

Beam phase patterns can be added together at any time. This can be
useful for beam steering, for example, a linear grating or a lens could
be added to another pattern to shift the location in the focal plane. It
is often better to add the phase patterns before calling the finalize
method, since the finalize method applies the modulo to the patterns
which may introduce additional artefacts if patterns are added after
this operation.
An example is shown in Fig. 16.

pattern = otslm.simple.lgmode(sz, 3, 2, 'radius', 50);
pattern = pattern + otslm.simple.linear(sz, 30);
pattern = otslm.tools.finalize(pattern);






[image: shifted lg beam]
Fig. 16 A linear ramp, generated with otslm.simple.linear(), is
added to a LG beam phase mask to shift the location of the LG beam
in the farfield (right).






Superposition of beams

To create a superposition of different beams we can combine the complex
amplitudes of the individual beams. To do this, we can use the
otslm.tools.combine() function.
This function provides a range of methods for combining beams, here
we will demonstrate the super method. The
combine function accepts additional arguments for weighted
super-positions and also supports adding random phase offsets using the
rsuper method.
The following code demonstrates using the super method, the output
is shown in Fig. 17.

pattern1 = otslm.simple.linear(sz, 30, 'angle_deg', 90);
pattern2 = otslm.simple.linear(sz, 30, 'angle_deg', 0);

pattern = otslm.tools.combine({pattern1, pattern2}, ...
    'method', 'super');

pattern = otslm.tools.finalize(pattern);






[image: superposition of beams]
Fig. 17 Demonstration of otslm.tools.combine() for combining
two linear gratings using the super-position method.






Arrays of patterns

By adding a grating, such as a 2-D sinusoidal grating, to the pattern it
is possible to create arrays of similar spots. This can be a quick
method for creating an array of optical traps for
interacting with many similar samples.
The following example shows how a sinusoid grating can be combined
with a LG-mode pattern to create the output shown in
Fig. 18.

lgpattern = otslm.simple.lgmode(sz, 5, 0);
grating = otslm.simple.sinusoid(sz, 50, 'type', '2dcart');

pattern = lgpattern + grating;
pattern = otslm.tools.finalize(pattern, 'amplitude', beamCorrection);






[image: arrays of beams]
Fig. 18 An array of beams generated using a sinusoidal grating.






Selecting regions of interest

Spatial light modulators can be used for creating beams and sampling
light from specific regions of beams for novel imaging applications. The
toolbox provides a method to help with creating region masks for
sampling different regions of the device. In this example, we show how
otslm.tools.mask_regions() can be used to sample three regions of the
device to create three separate beams.

The first stage is to setup three different spots. We specify the
location of each spot, the radius and the pattern. We use
otslm.tool.finalize() to apply amplitude corrections and apply the
modulo to the patterns but we request the output remain in the range
[0, 1).

loc1 = [ 170, 150 ];
radius1 = 75;
pattern1 = otslm.simple.lgmode(sz, 3, 0, 'centre', loc1);
pattern1 = pattern1 + otslm.simple.linear(sz, 20);
pattern1 = otslm.tools.finalize(pattern1, 'amplitude', beamCorrection, ...
    'colormap', 'gray');

loc2 = [ 320, 170 ];
radius2 = 35;
pattern2 = zeros(sz);

loc3 = [ 270, 300 ];
radius3 = 50;
pattern3 = otslm.simple.linear(sz, -20, 'angle_deg', 45);
pattern3 = otslm.tools.finalize(pattern3, 'amplitude', 0.4, ...
    'colormap', 'gray');





For the background we use a checkerboard pattern.

background = otslm.simple.checkerboard(sz);





To combine the patterns, we call otslm.tools.mask_regions()
with the background
pattern, the region patterns, their locations, radii and the mask shape
(in this case a circle). We then call otslm.tools.finalize() to
rescale the resulting pattern from the [0, 1) range to the [0, 2pi)
range needed for the visualisation.
The output is shown in Fig. 19.

pattern = otslm.tools.mask_regions(background, ...
    {pattern1, pattern2, pattern3}, {loc1, loc2, loc3}, ...
    {radius1, radius2, radius3}, 'shape', 'circle');

pattern = otslm.tools.finalize(pattern);






[image: three regions of interest]
Fig. 19 Example output from otslm.tools.mask_regions() sampling
three regions of interest.








Gerchberg-Saxton

The toolbox provides a number of iterative algorithms for
generating patterns. One such algorithm is the Gerchberg-Saxton
algorithm.
This method attempts to approximate the desired light field by
iteratively moving between the near-field and far-field.
A more detailed overview of the algorithm can be found in the
GerchbergSaxton section later in the documentation.

In OTSLM, most iterative algorithms are implemented as Matlab classes.
To use the GerchbergSaxton class, we need to specify the
target image.
Additionally, we can specify the propagation methods to use to go
between the near-field and far-field and an initial guess.
In this example, we setup a propagator with the incident illumination

prop = otslm.tools.prop.FftForward.simpleProp(zeros(sz));
vismethod = @(U) prop.propagate(U .* incident);





and then create an instance of the iterator class.
GerchbergSaxton also implements the adaptive-adaptive
algorithm via the adaptive optional parameter,
see the documentation for additional details.

target = otslm.simple.aperture(sz, sz(1)/20);
gs = otslm.iter.GerchbergSaxton(target, 'adaptive', 1.0, ...
    'vismethod', vismethod);





To run the algorithm, we simply need to call run with the number of
iterations we would like to run for.
The run method returns the complex amplitude pattern from the output
of the last iteration.
To retrieve the phase pattern, we can simply access the phase class
member.
This phase pattern has a range of 0 to 2pi, therefore it does not
need to be passed to otslm.tools.finalize() before visualisation.
Fig. 20 shows example output from this method.

gs.run(20);
pattern = gs.phase;






[image: beam created with Gerchberg-Saxton]
Fig. 20 Phase pattern generated using Gerchberg-Saxton (left) and
the simulated far-field (right).






Creating patterns for the DMD

A digital micro-mirror device (DMD) is a binary amplitude spatial light
modulator which consists of square pixels arranged in a diagonal
lattice. The arrangement of pixels means that the device has a 1:2
aspect ratio. Although the device can only control the amplitude of
individual pixels, it is still possible to create masks which control
both the phase and amplitude of the resulting beam.

In this example, we create a LG beam using a binary amplitude pattern,
following a similar approach to Lerner et al., Opt. Lett.37 (23)
4826–4828 (2012) [https://doi.org/10.1364/OL.37.004826]. We need to
use a different size and aspect ratio for the DMD, for this example we
will use a device with 512x1024 pixels.

dmdsz = [512, 1024];
aspect = 2;





To create the LG-mode pattern, we can use the otslm.simple.lgmode()
function. This function has an optional argument for the aspect ratio
and returns both the amplitude and phase for the pattern.

[phase, amplitude] = otslm.simple.lgmode(dmdsz, 3, 0, ...
    'aspect', aspect, 'radius', 100);





The DMD diffraction efficiency when controlling both the phase and
amplitude is fairly low, so we expect there to be a significant amount
of light left in the zero order. We can shift our LG beam away from the
zero order light using a linear diffraction grating. There are also
artefacts from the hard edges of the square (diamond) shaped pixels, to
avoid these artefacts we rotate the linear grating.

phase = phase + otslm.simple.linear(dmdsz, 40, ...
    'angle_deg', 62, 'aspect', aspect);





For this example we are going to assume uniform illumination. To encode
both the amplitude and phase into the amplitude-only pattern we can use
the finalize function and specify that the device is a DMD and the
colormap is grayscale. By default, the finalize function assumes DMDs
should be rotated (packed) differently, however we want to leave our
pattern unchanged for now and explicitly rotate it at a later stage, so
we pass none as the rpack option.

pattern = otslm.tools.finalize(phase, 'amplitude', amplitude, ...
    'device', 'dmd', 'colormap', 'gray', 'rpack', 'none');





At this stage, the pattern is for a continuous amplitude device. To
convert the continuous amplitude to a binary amplitude, we can use
otslm.tools.dither(). It is possible to do this all in one
step using one call to otslm.tools.finalize() but this
allows additional control over the dither.

pattern = otslm.tools.dither(pattern, 0.5, 'method', 'random');





Up until now, our pattern has been in device pixel coordinates. In order
to visualise what the pattern will look like in the far-field we need to
re-map the device pixel coordinates to the 1:2 aspect ratio found on a
physical device. For this we can use otslm.tools.finalize()
again, this time with the rpack argument set to 45deg.
We explicitly set no modulo
and a gray-scale colour-map again, however our pattern is already binary
so the output will still be zeros and ones.

patternVis = otslm.tools.finalize(pattern, ...
    'colormap', 'gray', 'rpack', '45deg', 'modulo', 'none');





The final step is to visualise the pattern. For this we create a uniform
incident illumination and we call the otslm.tools.visualise() method
with no phase.
The output is shown in Fig. 21.

dmdincident = ones(size(patternVis));

visOutput = abs(otslm.tools.visualise([], 'amplitude', patternVis, ...
    'method', 'fft', 'padding', padding, 'incident', dmdincident)).^2;

% Zoom into the resulting pattern
visOutput = visOutput(ceil(size(visOutput, 1)/2)-50+(-40:40), ...
    ceil(size(visOutput, 2)/2 +(-40:40)));






[image: dmd pattern]
Fig. 21 Binary amplitude DMD pattern (left) generating an LG-beam
beam in the far-field (right).









          

      

      

    

  

    
      
          
            
  
Gratings and Lens LiveScript

There are a number of ways to use OTSLM including traditional
Matlab scripts, graphical user interfaces (.mlapp files) and
live scripts [https://au.mathworks.com/help/matlab/matlab_prog/what-is-a-live-script-or-function.html].
Live scripts offer a method of adding graphical user interface
components (widgets) to your script to allow users to easily change
script parameters, see for example Fig. 22.
They are a far simpler method for providing a graphical user interface
experience compared to developing a Matlab application.
Additionally, they can be used to generate formatted output.


[image: image of a widget]
Fig. 22 Screenshot showing two different types of widgets that can be
created in a live script.



The live script can be used to generate PDF and HTML output
files, see here for an example.

At this stage we have provided a single example of using a live script
to control OTSLM: examples.liveScripts.GratingAndLens.
This live script demonstrates the basics of using OTSLM to generate
a pattern, simulate the far-field and display the image using a screen
device.
The pattern generation and simulation functionality is normal Matlab
code except for the addition of various widgets for controlling/setting
different options.
The major difference between live scripts and traditional scripts is
how they interact with otslm.utils.ScreenDevice.

Setting up a ScreenDevice in a live script
takes a bit more work
than usual.  Live scripts have their own non-visible figure object
for plotting.  When we show the ScreenDevice
window, a new visible
figure object is created.
After we show the ScreenDevice window for
the first time we need to tell the live script to use the old figure
for internal plots, otherwise it will replace the
ScreenDevice output every time we change a
slider value.
To achieve this, we use the following section of code

if 0 == exist('sd', 'var') || ~ishandle(sd.figure_handle)
    sd = otslm.utils.ScreenDevice(1, 'size', sz,...
        'pattern_type', 'phase', 'prescaledPatterns', true);

    % Get the figure handle for the livescript
    % We need to do this to make ScreenDevice run correctly
    figureHandle = gcf();

    % Show the ScreenDevice figure
    sd.show();

    % Change back to the liveScript figure handle
    % This also needs to be done if we click on another figure
    set(0, 'CurrentFigure', figureHandle);
end









          

      

      

    

  

    
      
          
            
  
Using the GPU

The toolbox provides methods for accelerating the computation of
holograms by taking advantage of the computer graphics hardware. There
are two approaches for using the graphics hardware: (1) use the GPU as a
co-processor, sending instructions to be evaluated on the device as is
done in HOTlab [https://github.com/MartinPersson/HOTlab]; and (2)
load a custom shader into the screen render pipeline as is done in
RedTweezers [https://doi.org/10.1016/j.cpc.2013.08.008].

Both these approaches have advantages and disadvantages. Communication
with the graphics hardware for co-processing is typically done using
very general languages such as
CUDA [https://developer.nvidia.com/cuda-zone] or
OpenCL [https://www.khronos.org/opencl/] which do not have direct
access to the render pipeline. Instructions and data is sent to the
device and the completed image is downloaded from the device once the
calculation is complete. In order to display a pattern on the screen,
the image must be copied back to the graphics hardware, introducing an
additional delay/overhead. The copy requirement is not a problem when
the intended target for the pattern is not the screen, for instance, if
the pattern is being saved to a file or sent over another connection
such as via USB, both these operations would require the pattern to be
copied regardless.

Instead, the pattern can be calculated as part of the graphics render
pipeline. This can be achieved by loading a custom
OpenGL [https://www.khronos.org/opengl/] shader program into the
graphics pipeline. Unlike CUDA or OpenCL, the OpenGL shader language
(GLSL) is optimized for drawing to the screen: GLSL programs are
compiled and loaded into the render pipeline. In contrast to
CUDA/OpenCL, which allow commands and data to be sent to the hardware, a
GLSL shader only allows data to be sent to the pre-compiled shader. The
shader must be recompiled every time the render pipeline changes, for
instance if we were to change from displaying linear gratings to sinc
patterns.

Both co-processing (via Matlab gpuArrays) and GLSL shaders (via
RedTweezers) are implemented in OTSLM, they are described in the
following sections. Although it may be possible to achieve
interoperability between CUDA/OpenCL and OpenGL, these features are not
currently implemented.


Contents


	Using the GPU as a co-processor


	Creating complex textures


	Using iterative algorithms






	Uploading a shader to the GPU


	Installing RedTweezers


	Displaying a image with RedTweezers


	Using the RedTweezers Prisms and Lenses


	Creating custom RedTweezers shaders











Using the GPU as a co-processor

Matlab supports calculations on the GPU via gpuArray objects. This
requires the Matlab Parallel Computing
Toolbox and a
compatible CUDA enabled graphics
card.
Functions which create textures can be passed a additional parameter
'gpuArray', true to enable using gpuArrays.

im = otslm.simple.checkerboard([1024, 1024], 'gpuArray', true);





This pattern remains on the GPU until copied back. It is better to keep
the pattern on the GPU until we are finished with it. We can perform
operations on this pattern in a similar way to normal Matlab matrices,
for instance

sz = [1024, 1024];
pattern = otslm.simple.checkerboard(sz, 'gpuArray', true);
lin = otslm.simple.linear(sz, 100, 'gpuArray', true);
ap = otslm.simple.aperture(sz, 512, 'gpuArray', true);

% Combine patterns and finalize
pattern(ap) = lin(ap);
pattern = otslm.tools.finalize(pattern);





To copy the final pattern back from the GPU we can use the gather
function.
The result is shown in Fig. 23.

pattern = gather(pattern);
imagesc(pattern);






[image: simple pattern with GPU]
Fig. 23 Example of a pattern generated with the GPU




Creating complex textures

The GPU often has significantly less memory than the main computer. This
means that methods like otslm.tools.combine() become memory limited
sooner. In order to work around this, it is sometimes possible to
implement a version which calculates each pattern, adds it to the total
array and re-uses the same memory to calculate the next pattern. The
otslm.tools.lensesAndPrisms() function implements the Prisms and
Lenses algorithm without needing to generate all the patterns before
combining.

xyz = randn(3, num_points);
pattern = otslm.tools.lensesAndPrisms(sz, xyz, 'gpuArray', true);





Using a GeForce GTX 1060 GPU to run the Prisms and Lenses algorithm
produces a order of magnitude decrease in run-time for multiple traps
compared to a i7-8750H CPU, as shown in
Fig. 24.


[image: prisms and lenses performance]
Fig. 24 Comparison of hologram generation time using CPU and GPU with
different numbers of traps.
For reference, a line is marked corresponding to the 60Hz refresh
rate of a moderately fast SLM.






Using iterative algorithms

Iterative algorithms can use GPU arrays if either the target or guess
are gpuArrays or if the iterative method is constructed using the named
parameter 'gpuArray', true. Not all methods support using the GPU at
this stage, for instance, Bowman2017 has not been modified to support
the GPU. The iterative methods have not been optimised and they
currently involve a lot of copy/matrix resizing operations which will
probably slow down optimisation. We aim to address these limitations in
future versions.

sz = [512, 512];
im = otslm.simple.aperture(sz, sz(1)/20, 'value', [0, 1], 'gpuArray', true);
gs = otslm.iter.GerchbergSaxton(im, 'adaptive', 1.0, 'objective', []);
pattern = gs.run(600, 'show_progress', false);










Uploading a shader to the GPU

For uploading OpenGL shaders to the GPU, we provide an interface to
RedTweezers [https://doi.org/10.1016/j.cpc.2013.08.008]. RedTweezers
operates as a UDP server that runs independently from Matlab, this means
it can run on any computer with OpenGL capabilities connected to your
network (with appropriate firewall permission). Images, shaders and
other data can be sent to RedTweezers via UDP, the RedTweezers server
deals with uploading the shader and managing the shaders memory.
RedTweezers interfaces are located in otslm.utils.RedTweezers.


Installing RedTweezers

To use RedTweezers, you will need to download the executable and have it
running on a computer that is accessible on your network. RedTweezers
can be downloaded from the computer physics communications program
summaries page [http://cpc.cs.qub.ac.uk/summaries/AEQH_v1_0.html].
Once downloaded, unzip the file (on windows you can use a program such as
7-zip [https://www.7-zip.org/] to extract the files from the
.tar.gz archive). Once unzipped, run either the
hologram_engine_64.exe (or hologram_engine.exe for the 32-bit
version). On the first run you may need to allow access to your network.
If everything worked correctly, a new window with the RedTweezers splash
screen should be displayed, shown in Fig. 25.


[image: red tweezers splash]
Fig. 25 Red tweezers splash screen.






Displaying a image with RedTweezers

Displaying images isn’t the intended purpose of RedTweezers, however by
loading a shader which simply draws a texture to the screen we can
implement a ScreenDevice-like interface
using RedTweezers. This is
implemented by otslm.utils.RedTweezers.Showable.
This class inherits from otslm.utils.Showable
(in addition to the RedTweezers base
class) and provides all the same functionality of a
ScreenDevice object.
By default the object is configured
to connect to UDP port 127.0.0.1:61557 and display an amplitude
pattern. We can change the port and pattern type using the optional
arguments.

rt = otslm.utils.RedTweezers.Showable('pattern_type', 'phase');
rt.window= [100, 200, 512, 512];   % Window size [x, y, width, height]
rt.show(otslm.simple.linear([200, 200], 20));





The main difference between ScreenDevice and
Showable
is the size of the pattern and the size/position of the window.
ScreenDevice requires the pattern size
to match the size of the window.
For Showable, the
pattern is stretched to fill the window. A further limitation is the
maximum packet size RedTweezers supports only allows images of
approximately 400x400 pixels (RedTweezers isn’t intended for displaying
images).




Using the RedTweezers Prisms and Lenses

otslm.utils.RedTweezers.PrismsAndLenses implements the Prisms and
Lenses algorithm described in the RedTweezers paper (and implemented in
the LabView code supplied with RedTweezers). To use the Prisms and
Lenses implementation, start by creating a new instance of the object
and configure the window and any other RedTweezers properties.

rt = otslm.utils.RedTweezers.PrismsAndLenses();
rt.window= [100, 200, 512, 512];   % Window size [x, y, width, height]





Then we need to configure the shader properties. These are not set by
default since they may already be set by another program.

rt.focal_length = 4.5e6;       % Focal length [microns]
rt.wavenumber = 2*pi/1.064;    % Wavenumber [1/microns]
rt.size = [10.2e6, 10.2e6];    % SLM size [microns]
rt.centre = [0.5, 0.5];
rt.total_intensity = 0.0;   % 0.0 to disable
rt.blazing = linspace(0.0, 1.0, 32);
rt.zernike = zeros(1, 12);





This should create a blank hologram. To add spots to this hologram use
the addSpot() method.
For example, to add a spot to diffract light to
a particular coordinate in the focal plane, use:

rt.addSpot('position', [60, 54, 7])
rt.addSpot('position', [-20, 10, -3])
rt.addSpot('position', [40, -37, 0])





If we have more than 50 spots we need to send the spot data as a GLSL
texture. The class automatically handles this. If we want to always use
a texture, we can set

rt.use_texture = true;








Creating custom RedTweezers shaders

To create a custom GLSL shader and load it using RedTweezers simply
inherit from the otslm.utils.RedTweezers.RedTweezers class,
load the GLSL shader source using the
sendShader(), and use
sendUniform() and
sendTexture() to
send data to the shader. For inspiration, look at the
Showable and
PrismsAndLenses implementations.









          

      

      

    

  

    
      
          
            
  
Accessing OTSLM from LabVIEW

It is possible to use functionality from OTSLM in LabVIEW. This can be
useful for implementing user interfaces which can be easily customised
or for integrating OTSLM with existing code.

To run MATLAB scripts from LabVIEW, you will need to use
MathScript [http://www.ni.com/en-au/shop/select/labview-mathscript-module]
or Interface for
MATLAB [http://www.ni.com/product-documentation/54843/en/] depending
on the version of LabVIEW you are using. We have provided an example
package using LabVIEW NXG 3.1 (using LabVIEW Interface for MATLAB) in
the examples/labview folder of the toolbox.

This section provides an overview of the LabVIEW example package and the
PrismsAndLenses example LabVIEW application. The example package only
provides the features needed for the PrismsAndLenese example. We welcome
contributions from LabVIEW users to improve this package to provide
better coverage of the OTSLM functionality.


Contents


	Creating an otslm.simple function interface


	Calling a function with a cell array


	Creating an otslm class interface


	Building an application







Creating an otslm.simple function interface

LabVIEW Interface for MATLAB (LIFM) provides a system for defining
different interfaces to matlab functions. Using LIFM, you can specify
the input parameter names and types in order to create an object that
can be imported into a VI. The current version of LabVIEW Interface for
MATLAB doesn’t provide a good method for dealing directly with string
constants or named parameters, instead it is better to create a separate
VI which wraps the LIFM interface.

In this section we take you through defining a interface for the
otslm.simple.lienar() function. This function takes two required
inputs (the size of the pattern and spacing of the grating) and outputs
a 2D array of doubles for the pattern. The complete example can be found
in
otslm/examples/labview/OtslmMatlabInterface/otslm.gcomp/simple/linear.mli
and
otslm/examples/labview/OtslmMatlabInterface/otslm.gcomp/simple/linear.gvi.

Start by creating a new Interface for Matlab, go to: File > New
> Interface for MATLAB. In the box marked Select a MATLAB program
file or enter a MATLAB function name enter otslm.simple.linear and
click Add interface node. Click Add parameter five times and
name the parameters im, sz, spacing, centre_str and
centre as shown in Fig. 26.


[image: matlab interface for otslm-simple-linear]
Fig. 26 Setting up the parameters for the Matlab interface
to otslm.simple.linear().



To change the data types and the input/output mode for the parameters,
click on the parameter and change the corresponding settings in the Item
panel, as shown in Fig. 27.


[image: item panel for otslm-simple-linear]
Fig. 27 Screenshot of the item configuration panel.



In order to use this interface the OTSLM path must be added to the
Matlab path. You can do this either by adding the OTSLM path in the
Startup.m script, as described on the getting started page, or you
can run a script which adds OTSLM to the Matlab path. In the example
package, we run a script to add OTSLM to the path. The initOtslm.m
script, located in the examples/labview directory contains the
following code:

function initOtslm()

  fname = mfilename('fullpath');
  [fpath, ~, ~] = fileparts(fname);
  fparts = split(fpath, filesep);

  % Add current path
  addpath(fpath);

  % Add toolbox path
  toolbox_path = fullfile(fparts{1:end-2});
  addpath(toolbox_path);

end





The script first finds the path for the mfile, adds the
examples/labview directory to the path and adds the relative path
for the otslm directory to the path. To call this script, you will
need to create another Matlab interface and specify the file path to
this script. The interface for this script doesn’t need any parameters.
This script should be run at the start of each LabVIEW session or at the
start of each LabVIEW application.

The Matlab interface created for otslm.simple.linear() can now be
included in LabVIEW applications or VIs. To use the interface, you must
connect values to each of the input and output parameters and optionally
the input/output error connectors. However, most of the time you will
not need to change all of the parameters, for instance, the
centre_str parameter will always be the string 'centre'. To
simplify the interface and allow customisation of the icon we can create
a wrapper VI for the Matlab interface. To create a new VI, click
File > New > VI. Add the Matlab Interface VI you just
created to the centre of the diagram and connect nodes to the terminals
as shown in Fig. 28.


[image: item panel for otslm-simple-linear]
Fig. 28 Wrapper for LabVIEW interface for matlab.



This interface can be further improved, for instance, making the centre
array optional and checking the length of the array is correct. For
example code, see linear.gvi.

Once the diagram has been configured, you can create a front panel to
test the interface and configure the icon.




Calling a function with a cell array

The otslm.tools.combine() function takes as input a cell array of
patterns to combine and returns a single pattern as the result. LabVIEW
doesn’t currently provide a mechanism for calling a function with a cell
array, however we can work around this by writing a wrapper function
which takes a 3D array of images and converts them to a cell array of 2D
images. The unpackCombine.m function in examples/labview does
exactly this:

function varargout = unpackCombine(input3, varargin)

  input = mat2cell(input3, size(input3, 1), size(input3, 2), ...
    ones(1, size(input3, 3)));

  input = squeeze(input);

  [varargout{1:nargout}] = otslm.tools.combine(input, varargin{:});

end





It is now possible to create an LabVIEW Interface for Matlab using this
function as described in the previous section.




Creating an otslm class interface

In order to use OTSLM classes, such as otslm.utils.ScreenDevice
we need to construct and instance of the object, call its methods and clean
up the instance once we are done. LabVIEW only supports creating
function and script interfaces for Matlab. In order to work around this,
we can write a dispatch method which creates the class instance and
handles calls to the function methods. The following is an example of a
dispatch method:

function varargout = callClassMethod(varname, classname, methodname, varargin)

assert(~isempty(varname), 'varname must be supplied');

tmpvarname = 'ourargs';

if isempty(methodname) && ~isempty(classname)

  % Create a new instance of the class
  assignin('base', tmpvarname, varargin);
  evalin('base', [varname, ' = ', classname, '(', tmpvarname, '{:});']);

elseif isempty(classname) && ~isempty(methodname)

  % Call a class method
  assignin('base', tmpvarname, varargin);
  [varargout{1:nargout}] = evalin('base', [varname, '.', methodname, '(', tmpvarname, '{:});']);

else
  error('Only classname or methodname must be supplied');

end





This function places the Matlab class instance in the base workspace, we
keep track of the class instance using a string (varname) in
LabVIEW. To use this dispatch method, we need to create a LabVIEW
Interface for MATLAB for the class and add each class method we wish to
use, including the constructor and destructor. For
ScreenDevice, the interface might look
something like the one shown in Fig. 29.


[image: item panel for otslm-simple-linear]
Fig. 29 An interface example for a Matlab class using the
callClassMethod dispatch function.



We can then implement a wrapper VI for each of these methods as
described in the previous sections. The classname and methodname
arguments specify the constructor name and the class method name to be
called. For the destructor, use the string 'delete' for the method
name. In order to use this interface, we need to keep track of the class
instance name and make sure we construct and delete the object before
using other methods of the class. For example usage, see
Building an application.




Building an application

This section describes building a LabVIEW application for generating a
Prisms and Lenses hologram which is drawn using
ScreenDevice.
You can find the finished application in
examples/labview/OtslmMatlabInterface/PrismsAndLenses.gcomp. This
example assumes you have followed the above instructions to implement
your own VIs for the spherical, linear, combine and
ScreenDevice OTSLM functions/classes or you are using the examples
provided in the examples/labview/OtslmMatlabInterface/otslm.gcomp
package. If you use the example application/package, you will need to
modify the path in otslm.gcomp/initOtslm.mli to find the correct
path for the initOtslm.m file.

Create a new application in LabVIEW by going to File > New >
Application. Name the application. Add a new VI to the application
for the front panel (where the main user interface will be displayed):
right click on the application icon in the project browser and click:
New > VI, as shown in Fig. 30.


[image: adding a new VI to an application]
Fig. 30 Adding a new VI to an application.



Create the VI by adding the controls shown in
Fig. 31.


[image: layout of front panel]
Fig. 31 Layout of front panel.



The user interface will allow the user to specify the size and position
of the window on the screen, change the number and location of spots in
the Prisms and Lenses algorithm, and see a preview of what the image
will look like on the screen.

To implement this, we need to initialise OTSLM, construct the screen
device object for displaying the patterns, generate the array of
patterns to pass to otslm.tools.combine for each spot the user requests,
and display the result in the previous and on the screen.

To generate the array of patterns for each prisms and lenses spot, we
will create a sub-vi which takes as input the pattern size and spot
locations and generates a 3D array of patterns which we can pass to
combine. Add a new vi to your application and configure it with the
nodes shown in Fig. 32.


[image: layout of generate images diagram]
Fig. 32 Layout of generate images diagram.



To add the spherical and lenses sub-vis, either click and drag
the VIs from the project file tree or add them from the Project
Items menu, as shown in Fig. 33.


[image: using the project items menu]
Fig. 33 Using the project items menu.



Connect the input and output nodes in the icon diagram as shown
in Fig. 34.


[image: layout of generate images icon]
Fig. 34 Layout of generate images icon.



Next, switch back to the front panel diagram and construct the program
shown in Fig. 35.


[image: layout of the front panel diagram]
Fig. 35 Layout of the front panel diagram.



In this example we use a loop to continuously update the display when
the user changes inputs to the VI. The ScreenDevice is positioned and
constructed outside the loop, this means that the size of the pattern
and location are fixed throughout the entire run of the program. If the
show display checkbox is not clicked, the ScreenDevice is asked to
close, otherwise the pattern is displayed to the screen.







          

      

      

    

  

    
      
          
            
  
Packages

The toolbox is split into the following packages:


	Simple includes simple procedural functions for
generating phase and amplitude patterns.


	Iter includes iterative methods for generating
patterns based on a target beam.


	Tools provides tools for combining beams and
visualising the output.


	Utils provides functions not necessarily related
to pattern generation but things our group has found useful for
displaying patterns.


	Ui contains graphical user interfaces for most of
the functionality in the toolbox. These user interfaces are useful
for quickly exploring the functionality of the toolbox.











          

      

      

    

  

    
      
          
            
  
simple Package

This page contains a description of the functions contained in the
otslm.simple package. These functions typically have analytic
expressions and the functionality can be implemented in just a few lines
of code. The implementation in the toolbox contains additional inputs to
help with things like centring the patterns or generating the grids.

Most of these functions take as input the size of the image to generate,
a two or three element vector with the width and height of the device;
and parameters specific to the method. They produce one or more matlab
matrices with the specified size. For example, a checkerboard image with
100 rows and 50 columns could be created with:

rows = 100;
cols = 50;
sz = [rows, cols];
im = otslm.simple.checkerboard(sz);
imagesc(im);
disp(size(im));





The functions have been grouped into categories: Lens functions,
Beams, Gratings, 3-D functions
and Miscellaneous. This is a very general and
non-unique grouping. The output of many of these functions can be placed
directly on a spatial light modulator as a phase or amplitude masks, or
output of multiple functions can be combined using functions in the
tools Package or Matlab operations on arrays
(e.g., array addition or logical indexing).


Contents


	Lens functions


	Beams


	Gratings


	Miscellaneous


	3-D functions







Lens functions

These functions produce a single array. These arrays can be used to
describe the phase functions of different lenses. Most of these
functions support 1-D or 2-D variants, for instance, the spherical
function can be used to create a cylindrical or spherical lens.


Functions


	aspheric


	axicon


	cubic


	spherical


	parabolic


	gaussian







aspheric


	
otslm.simple.aspheric(sz, radius, kappa, varargin)

	Generates a aspherical lens.
The equation describing the lens is


\[z(r) = \frac{r^2}{ R ( 1 + \sqrt{1 - (1 + \kappa) r^2/R^2})}
           + \sum_{i=2}^N  \alpha_i  r^{2i} + \delta\]

where \(R\) is the radius of the lens, \(\kappa\) determines
if the lens shape:



	<-1      – hyperbola


	-1       – parabola


	(-1, 0)  – ellipse (surface is a prolate spheroid)


	0        – sphere


	> 0      – ellipse (surface is an oblate spheroid)







and the \(\alpha\)’s corresponds to higher order corrections
and \(\delta\) is a constant offset.


	Usage

	pattern = aspheric(sz, radius, kappa, …) generates a aspheric lens
described by radius and conic constant centred in the image.



	Parameters

	
	sz – size of the pattern [rows, cols]


	radius – Radius of the lens \(R\)


	kappa – conic constant \(\kappa\)






	Optional named parameters

	
	‘alpha’    [a1, …] –   additional parabolic correction terms


	‘delta’       offset –   offset for the final pattern (default: 0.0)


	‘scale’       scale  –   scaling value for the final pattern


	‘background’  img    –   Specifies a background pattern to use for
values outside the lens.  Can be a matrix; a scalar, in which case
all values are replaced by this value; or a string with
‘random’ or ‘checkerboard’ for these patterns.


	‘centre’      [x, y] –   centre location for lens (default: sz/2)


	‘offset’      [x, y] –   offset after applying transformations


	‘type’        type   –   is the lens cylindrical or spherical (1d or 2d)


	‘aspect’      aspect –   aspect ratio of lens (default: 1.0)


	‘angle’       angle  –   Rotation angle about axis (radians)


	‘angle_deg’   angle  –   Rotation angle about axis (degrees)


	‘gpuArray’    bool   –   If the result should be a gpuArray















axicon


	
otslm.simple.axicon(sz, gradient, varargin)

	Generates a axicon lens.
The equation describing the lens is


\[z(r) = -G |r|\]

where \(G\) is the gradient of the lens.


	Usage

	pattern = axicon(sz, gradient, …)



	Parameters

	
	sz – size of the pattern [rows, cols]


	gradient – gradient of the lens \(G\)






	Optional named parameters

	
	‘centre’      [x, y] –   centre location for lens (default: sz/2)


	‘offset’      [x, y] –   offset after applying transformations


	‘type’        type   –   is the lens cylindrical or spherical (1d or 2d)


	‘aspect’      aspect –   aspect ratio of lens (default: 1.0)


	‘angle’       angle  –   Rotation angle about axis (radians)


	‘angle_deg’   angle  –   Rotation angle about axis (degrees)


	‘gpuArray’    bool   –   If the result should be a gpuArray












Example (see also Fig. 36):

sz = [128, 128];
gradient = 0.1;
im = otslm.simple.axicon(sz, gradient);






[image: Example of an axicon lens]
Fig. 36 Example of a axicon lens.






cubic


	
otslm.simple.cubic(sz, varargin)

	Generates cubic phase pattern for Airy beams.
The phase pattern is given by


\[f(x, y) = (x^3 + y^3)s^3\]

where \(s\) is a scaling factor.


	Usage

	pattern = cubic(sz, …) generates a cubic pattern according to



	Parameters

	
	sz (size) – size of the pattern [rows, cols]






	Optional named parameters

	
	scale      (numeric) – Scaling factor for pattern.


	centre     (numeric) – Centre location for lens (default: sz/2)


	offset     (numeric) – Offset after applying transformations [x,y]


	type       (enum)    – Cylindrical 1d or spherical 2d


	aspect     (numeric) – aspect ratio of lens (default: 1.0)


	angle      (numeric) – Rotation angle about axis (radians)


	angle_deg  (numeric) – Rotation angle about axis (degrees)


	gpuArray   (logical) – If the result should be a gpuArray












Example (see also Fig. 37):

sz = [128, 128];
im = otslm.simple.cubic(sz);






[image: example cubic function output]
Fig. 37 Example of a cubic function.






spherical


	
otslm.simple.spherical(sz, radius, varargin)

	Generates a spherical lens pattern.
The equation describing the lens is


\[z(r) = \frac{R}{|R|} \frac{A}{r} \sqrt{R^2 - r^2}\]

where \(A\) is a scaling factor and \(R\) is the lens radius.
Imaginary values are undefined and can be replaced by another value.


	Usage

	pattern = spherical(sz, radius, …) generates a spherical pattern
with values from 0 (at the edge) and 1*sign(radius) (at the centre).



	Parameters

	
	sz – size of the lens


	radius – radius of the lens \(R\)






	Optional named arguments

	
	‘delta’       offset  –  offset for pattern (default: -sign(radius))


	‘scale’       scale   –  scaling value for the final pattern


	‘background’  img     –  Specifies a background pattern to use for
values outside the lens.  Can also be a scalar, in which case
all values are replaced by this value; or a string with
‘random’ or ‘checkerboard’ for these patterns.


	‘centre’      [x, y]  –  centre location for lens


	‘offset’      [x, y]  –  offset after applying transformations


	‘type’        type    –  is the lens cylindrical or spherical (1d or 2d)


	‘aspect’      aspect  –  aspect ratio of lens (default: 1.0)


	‘angle’       angle   –  Rotation angle about axis (radians)


	‘angle_deg’   angle   –  Rotation angle about axis (degrees)


	‘gpuArray’    bool    –  If the result should be a gpuArray








See also aspheric().





The following example creates a spherical lens with radius 128 pixels,
as shown in Fig. 38.
The lens is centred in the pattern and a checkerboard pattern is
used for values outside the lens.

sz = [256, 256];
radius = 128;
background = otslm.simple.checkerboard(sz);
im = otslm.simple.spherical(sz, radius, 'background', background);






[image: example spherical lens output]
Fig. 38 Example of a spherical lens.






parabolic


	
otslm.simple.parabolic(sz, alphas, varargin)

	Generates a parabolic lens pattern.
The equation describing this lens is


\[z(r) = \alpha_1*r^2 + \alpha_2*r^4 + \alpha_3*r^6 + ...\]

where \(\alpha_n\) are the polynomial coefficients.


	Usage

	pattern = parabolic(sz, alphas, …) generates a parabolic lens.



	Parameters

	
	sz (size) – size of pattern [rows, cols]


	alphas – array of polynomial coefficients \(\alpha_n\)








The default centre for the lens is the centre of the pattern,
this can be modified with named parameters.

See also aspheric() for more information and named parameters.








gaussian


	
otslm.simple.gaussian(sz, sigma, varargin)

	Generates a Gaussian pattern.
A Gaussian pattern can be used as a lens or as the intensity
profile for the incident illumination.
The equation describing the pattern is


\[z(r) = A \exp{-r^2/(2\sigma^2)}\]

where \(A\) is a scaling factor and \(\sigma\) is the
radius of the Gaussian.


	Usage

	pattern = gaussian(sz, sigma, …)



	Parameters

	
	sz (numeric) – size of the pattern [rows, cols]


	sigma (numeric) – radius of the Gaussian \(\sigma\)






	Optional named parameters

	
	‘scale’ (numeric) – scaling value \(A\) (default: 1).


	‘centre’      [x, y] –   centre location for lens (default: sz/2)


	‘offset’      [x, y] –   offset after applying transformations


	‘type’        type   –   is the lens cylindrical or spherical (1d or 2d)


	‘aspect’      aspect –   aspect ratio of lens (default: 1.0)


	‘angle’       angle  –   Rotation angle about axis (radians)


	‘angle_deg’   angle  –   Rotation angle about axis (degrees)


	‘gpuArray’    bool   –   If the result should be a gpuArray












Example usage (see also Fig. 39):

sz = [128, 128];
sigma = 64;
im = otslm.simple.gaussian(sz, sigma, 'scale', 2.0);
imagesc(im);






[image: example gaussian output]
Fig. 39 Example output from gaussian().








Beams

These functions can be used to calculate the amplitude and phase
patterns for different kinds of beams. To generate these kinds of beams,
and other arbitrary beams, both the amplitude and phase of the beam
needs to be controlled. This can be achieved by generating a phase or
amplitude pattern which combines the phase and amplitude patterns
produced by these functions, for details see the
Advanced Beams example and otslm.tools.finalize().


Functions


	bessel


	hgmode


	lgmode


	igmode







bessel


	
otslm.simple.bessel(sz, mode, varargin)

	Generates the phase and amplitude patterns for Bessel beams


	Usage

	pattern = bessel(sz, mode, …) generates the phase
pattern for a particular order Bessel beam.

[phase, amplitude] = bessel(…) also calculates the signed
amplitude of the pattern in addition to the phase.



	Parameters

	
	sz – size of the pattern [rows, cols]


	mode (integer) – bessel function mode






	Optional named parameters:

	
	‘scale’       scale  – radial scaling factor for pattern


	‘centre’      [x, y] – centre location for lens (default: sz/2)


	‘offset’      [x, y] – offset after applying transformations


	‘type’        type   – is the lens cylindrical or spherical (1d or 2d)


	‘aspect’      aspect – aspect ratio of lens (default: 1.0)


	‘angle’       angle  – Rotation angle about axis (radians)


	‘angle_deg’   angle  – Rotation angle about axis (degrees)


	‘gpuArray’    bool   – If the result should be a gpuArray















hgmode

Hermite-Gaussian [https://en.wikipedia.org/wiki/Gaussian_beam#Hermite-Gaussian_modes]
(HG) beams are solutions to the paraxial wave equation in
Cartesian coordinates.
Beams are described by two mode indices.


	
otslm.simple.hgmode(sz, xmode, ymode, varargin)

	Generates the phase pattern for a HG beam


	Usage

	pattern = hgmode(sz, xmode, ymode, …) generates the phase
pattern with x and y mode numbers.

[phase, amplitude] = hgmode(…) also calculates the signed
amplitude of the pattern in addition to the phase.



	Parameters

	
	sz – size of the pattern


	xmode – HG mode order in the x-direction


	ymode – HG mode order in the y-direction






	Optional named parameters

	
	‘scale’       scale  –   scaling factor for pattern


	‘centre’      [x, y] –   centre location for lens (default: sz/2)


	‘offset’      [x, y] –   offset after applying transformations


	‘aspect’      aspect –   aspect ratio of lens (default: 1.0)


	‘angle’       angle  –   Rotation angle about axis (radians)


	‘angle_deg’   angle  –   Rotation angle about axis (degrees)


	‘gpuArray’    bool   –   If the result should be a gpuArray















lgmode

Laguerre-Gaussian [https://en.wikipedia.org/wiki/Gaussian_beam#Laguerre-Gaussian_modes]
(LG) beams are solutions to the paraxial wave equation in
cylindrical coordinates.


	
otslm.simple.lgmode(sz, amode, rmode, varargin)

	Generates the phase pattern for a LG beam


	Usage

	pattern = lgmode(sz, amode, rmode, …) generates phase pattern.

[phase, amplitude] = lgmode(…) also generates the amplitude pattern.



	Parameters

	
	sz – size of the pattern


	amode – azimuthal order


	rmode – radial order






	Optional named parameters

	
	‘radius’    radius   – scaling factor for radial mode rings


	‘p0’        p0       – incident amplitude correction factor
Should be 1.0 (default) for plane wave illumination (w_i = Inf),
for Gaussian beams should be p0 = 1 - radius^2/w_i^2.
See Lerner et al. (2012) [https://doi.org/10.1364/OL.37.004826]
for details.


	‘centre’      [x, y] –   centre location for lens (default: sz/2)


	‘offset’      [x, y] –   offset after applying transformations


	‘aspect’      aspect –   aspect ratio of lens (default: 1.0)


	‘angle’       angle  –   Rotation angle about axis (radians)


	‘angle_deg’   angle  –   Rotation angle about axis (degrees)


	‘gpuArray’    bool   –   If the result should be a gpuArray








In order to generate pure LG beams it is necessary to control both the
beam amplitude and phase. However, if the purity of the beam is not
important then the phase pattern is often sufficient to generate the
desired beam shape.








igmode

Ince-Gaussian [https://en.wikipedia.org/wiki/Gaussian_beam#Ince-Gaussian_modes]
(IG) beams are solutions to the paraxial wave equation in
elliptical coordinates.
The IG modes for a complete basis in elliptic coordinates.
When the ellipticity parameter is infinite, IG beams are equivalent to HG
beams, and when the ellipticity approaches 0, IG beams are equivalent to
LG beams.


	
otslm.simple.igmode(sz, even, modep, modem, elipticity, varargin)

	Generates phase and amplitude patterns for Ince-Gaussian beams

Ince-Gaussian beams are described in Bandres and Gutirrez-Vega (2004) [https://doi.org/10.1364/ol.29.000144].


Warning

This function is a work-in-progress and may not
produce clean output.




	Usage

	pattern = igmode(sz, even, modep, modem, elipticity, …)

[phase, amplitude] = igmode(…) also calculates the signed
amplitude of the pattern in addition to the phase.



	Parameters

	
	even – True for even parity


	modep – polynomial order p (integer: 0, 1, 2, …)


	modem – polynomial degree m (\(0 \leq m \leq p\))


	elipticity – elipticity of the coordinates.






	Optional named parameters

	
	‘scale’       scale  –   scaling factor for pattern


	‘centre’      [x, y] –   centre location for lens (default: sz/2)


	‘offset’      [x, y] –   offset after applying transformations


	‘aspect’      aspect –   aspect ratio of lens (default: 1.0)


	‘angle’       angle  –   Rotation angle about axis (radians)


	‘angle_deg’   angle  –   Rotation angle about axis (degrees)


	‘gpuArray’    bool   –   If the result should be a gpuArray








This function uses code from Miguel Bandres, see source code
for information about copyright/license/distribution.










Gratings

These functions can be used to create periodic patterns which can be
used to create diffraction gratings.


Functions


	linear


	sinusoid







linear


	
otslm.simple.linear(sz, spacing, varargin)

	Generates a linear gradient.
The pattern is described by


\[f(x) = \frac{1}{D} x\]

where the gradient is \(1/D\). For a periodic grating with
maximum height of 1, \(D\) corresponds to the grating spacing.


	Usage

	pattern = linear(sz, spacing, …)



	Parameters

	
	sz (numeric) – size of pattern [rows, cols]


	spacing – inverse gradient \(D\)






	Optional named parameters

	
	‘centre’      [x, y] –   centre location for lens (default: [1, 1])


	‘offset’      [x, y] –   offset after applying transformations


	‘aspect’      aspect –   aspect ratio of lens (default: 1.0)


	‘angle’       angle  –   Rotation angle about axis (radians)


	‘angle_deg’   angle  –   Rotation angle about axis (degrees)


	‘gpuArray’    bool   –   If the result should be a gpuArray








To generate a linear grating (a saw-tooth grating) you need to take
the modulo of this pattern.  This is done by otslm.tools.finalize()
but can also be done explicitly with:

sz = [40, 40];
spacing = 10;
im = mod(otslm.simple.linear(sz, spacing, 'angle_deg', 45), 1);









Fig. 40 shows example output.


[image: example output from linear function]
Fig. 40 Example output from linear().



Spacing can be a single number or two numbers for the spacing in the x
and y directions. For an example of how linear() can be
used to shift the beam focus, see
Gratings and Lens LiveScript.




sinusoid


	
otslm.simple.sinusoid(sz, period, varargin)

	Generates a sinusoidal grating.
The function for the pattern is


\[f(x) = A\sin(2\pi x/P) + \delta\]

Where \(A\) is the scale, \(\delta\) is the mean,
and \(P\) is the period.

This function can create a one dimensional grating in polar
(circular) coordinates, in linear coordinates, or a mixture
of two orthogonal gratings, see the types parameters for information.


	Usage

	pattern = sinusoid(sz, period, …) generates a sinusoidal grating
with the default scale of 0.5 and default mean of 0.5.



	Parameters

	
	sz (numeric) – size of pattern [rows, cols]


	period (numeric) – period \(P\)






	Optional named parameters

	
	‘scale’ (numeric) – pattern scale \(A\) (default: 1)


	‘mean’ (numeric)  – offset for pattern \(\delta\) (default: 0.5)


	‘type’ (enum)     – the type of sinusoid pattern to generate






	‘1d’     – one dimensional (default)


	‘2d’     – circular coordinates


	‘2dcart’ – multiple of two sinusoid functions at 90 degree angle
supports two period values [ Px, Py ].








	‘centre’      [x, y]  –  centre location for lens


	‘offset’      [x, y]  –  offset after applying transformations


	‘aspect’      aspect  –  aspect ratio of lens (default: 1.0)


	‘angle’       angle   –  Rotation angle about axis (radians)


	‘angle_deg’   angle   –  Rotation angle about axis (degrees)


	‘gpuArray’    bool    –  If the result should be a gpuArray












Fig. 41 shows different types of
sinusoid gratings supported by the function.


[image: different sinusoid gratings]
Fig. 41 Example of different sinusoid gratings generated using sinusoid().



Example usage (see also Fig. 42):

sz = [40, 40];
period = 10;
im = sinusoid(sz, period);






[image: example output from sinusoid]
Fig. 42 Example output from sinusoid().








Miscellaneous

Various functions for generating patterns not described in other
sections.
This includes the grid() and aperture() functions which
are used to create the grids and masks used by other toolbox functions.


Functions


	aperture


	aberrationRiMismatch


	zernike


	sinc


	checkerboard


	grid


	random


	step







aperture


	
otslm.simple.aperture(sz, dimension, varargin)

	Generates different shaped aperture patterns/masks


	Usage

	pattern = aperture(sz, dimension, …) creates a circular aperture with
radius given by parameter dimension.  Array is logical array.



	Parameters

	
	sz – size of the pattern [rows, cols]


	dimension – List of numbers describing the aperture size.
Lens of the list depends on the aperture shape.  For a circle
dimensions is one element, the radius of the circle.






	Optional named parameters

	
	‘shape’ – Shape of aperture to generate. See supported shapes bellow.


	‘value’       [l, h]  –  values for off and on regions (default: [])


	‘centre’      [x, y]  –  centre location for pattern


	‘offset’      [x, y]  –  offset in rotated coordinate system


	‘aspect’    (num)     –  aspect ratio of lens (default: 1.0)


	‘angle’     (num)     –  Rotation angle about axis (radians)


	‘angle_deg’ (num)     –  Rotation angle about axis (degrees)


	‘gpuArray’ (logical)  –  If the result should be a gpuArray






	Supported shapes [dimensions]

	
	‘circle’    [radius] – Pinhole/circular aperture


	‘square’    [width]  – Square with equal sides


	‘rect’      [w, h]   – Rectangle with width and height


	‘ring’      [r1, r2] – Ring specified by inner and outer radius












Fig. 43 shows examples of different apertures.


[image: Example of different aperture types]
Fig. 43 Example of different aperture types generated by aperture().



Logical arrays can be used to mask parts of other arrays. This can be
useful for creating composite images, for example (see also
Fig. 44):

sz = [256, 256];
im = otslm.simple.linear(sz, 256);
chk = otslm.simple.checkerboard(sz);
app = otslm.simple.aperture(sz, 80);
im(app) = chk(app);






[image: Aperture used for logical array indexing]
Fig. 44 Example of using aperture() to generate logical arrays
for masking two patterns.






aberrationRiMismatch


	
otslm.simple.aberrationRiMismatch(sz, n1, n2, alpha, varargin)

	Calculates aberration for a plane interface refractive index mismatch.

The aberration can be described using geometric optics, see
Booth et al., Journal of Microscopy, Vol. 192, Pt 2, Nov. 1998.
This function calculates the pattern according to


\[z(r) = d f(r) n_1 \sin\alpha\]

where


\[f(r) = \sqrt{\csc^2\beta - r^2} - \sqrt{\csc^2\alpha - r^2},\]

\(d\) is the depth into medium 2, \(n_1, n_2\) are the refractive
indices in the mediums, \(n_1\sin\alpha = n_2 \sin\beta\)
and \(\alpha\) is the maximum capture angle of the lens which is
related to the numerical aperture by \(n_1 \sin\alpha\).

The focus is located in medium 2, which is separated from medium 1
and the lens by a plane interface.


	Usage

	pattern = aberrationRiMismatch(sz, n1, n2, alpha, …)



	Parameters

	
	sz (size) – size of pattern [rows, cols]


	n1 (numeric) – refractive index of medium 1


	n2 (numeric) – refractive index of medium 2


	alpha (numeric) – maximum capture angle of lens (radians)






	Optional named parameters

	
	radius (numeric) – radius of aperture.  Default min(sz)/2.


	depth (numeric)  – depth of focus into medium 2 (units of
wavelength in medium).  Default 1.0.


	background (numeric|enum) – Specifies a background pattern to use
for values outside the lens.  Can also be a scalar, in which case
all values are replaced by this value; or a string with
‘random’ or ‘checkerboard’ for these patterns.


	‘centre’      [x, y]  –  centre location for lens


	‘offset’      [x, y]  –  offset after applying transformations


	‘aspect’      aspect  –  aspect ratio of lens (default: 1.0)


	‘angle’       angle   –  Rotation angle about axis (radians)


	‘angle_deg’   angle   –  Rotation angle about axis (degrees)


	‘gpuArray’    bool    –  If the result should be a gpuArray








See also examples.liveScripts.booth1998.





Example usage (see also Fig. 45):

sz = [512, 512];
n1 = 1.5;
n2 = 1.33;
NA = 0.4;
alpha = asin(NA/n1);
pattern = otslm.simple.aberrationRiMismatch(sz, ...
    n1, n2, alpha, 'depth', 2.0);






[image: example aberrationRiMismatch output]
Fig. 45 Example output from aberrationRiMismatch().






zernike

zernike() generates a pattern based on the Zernike
polynomials [https://en.wikipedia.org/wiki/Zernike_polynomials]. The
Zernike polynomials are a complete basis of orthogonal functions across
a circular aperture. This makes them useful for describing beams or
phase corrections to beams at the back-aperture of a microscope
objective.


	
otslm.simple.zernike(sz, m, n, varargin)

	Generates a pattern based on the zernike polynomials.

The polynomials are parameterised by two integers, \(m\)
and \(n\). \(n\) is a positive integer, and
\(|m| \leq n\).


	Usage

	pattern = zernike(sz, m, n, …)



	Parameters

	
	sz (numeric) – size of the pattern [rows, cols]


	m (numeric) – polynomial order parameter (integer)


	n (numeric) – polynomial order parameter (integer)






	Optional named parameters

	
	‘scale’       scale  –   scaling value for the final pattern


	‘rscale’      rscale –   radius scaling factor (default: min(sz)/2)


	‘outside’     val    –   Value to use for outside points (default: 0)


	‘centre’      [x, y] –   centre location for lens (default: sz/2)


	‘offset’      [x, y] –   offset after applying transformations


	‘aspect’      aspect –   aspect ratio of lens (default: 1.0)


	‘angle’       angle  –   Rotation angle about axis (radians)


	‘angle_deg’   angle  –   Rotation angle about axis (degrees)


	‘gpuArray’    bool   –   If the result should be a gpuArray








See also examples.liveScripts.booth1998.





Example usage (see also Fig. 46):

n = 4;
m = 2;
sz = [512, 512];
im = otslm.simple.zernike(sz, m, n);






[image: example zernike]
Fig. 46 Example output from zernike().






sinc


	
otslm.simple.sinc(sz, radius, varargin)

	Generates a sinc pattern.
This pattern can be used to create a line shaped trap or as a
model for the diffraction pattern from a aperture.
The equation describing the pattern is


\[f(x) = \sin(\pi x/R)/(\pi x/R)\]

and 1 when x is zero; where \(R\) is the radius (scaling factor).


	Usage

	pattern = sinc(sz, radius, …)



	Parameters

	
	sz (numeric) – size of the pattern [rows, cols]


	radius (numeric) – radial scaling factor






	Optional named parameters

	
	‘type’        type    –  the type of sinc pattern to generate






	‘1d’     – one dimensional


	‘2d’     – circular coordinates


	‘2dcart’ – multiple of two sinc functions at 90 degree angle
supports two radius values: radius = [ Rx, Ry ].








	‘centre’      [x, y]  –  centre location for lens


	‘offset’      [x, y]  –  offset after applying transformations


	‘aspect’      aspect  –  aspect ratio of lens (default: 1.0)


	‘angle’       angle   –  Rotation angle about axis (radians)


	‘angle_deg’   angle   –  Rotation angle about axis (degrees)


	‘gpuArray’    bool    –  If the result should be a gpuArray












Example usage (see also Fig. 47):

radius = 10;
sz = [100, 100];
im = otslm.simple.sinc(sz, radius);






[image: sinc example output]
Fig. 47 Example output from sinc().






checkerboard


	
otslm.simple.checkerboard(sz, varargin)

	Generates a checkerboard pattern.
A checkerboard pattern with equal sized squares can be written
mathematically as


\[f(x, y) = \mod(x + y, 2)\]


	Usage

	pattern = checkerboard(sz, …) creates a checkerboard with spacing
of 1 pixel and values of 0 and 0.5.



	Parameters

	
	sz – size of the pattern [rows, cols]






	Optional named parameters

	
	‘spacing’   spacing  –   Width of checks (default 1 pixel)


	‘value’     [l,h]    –   Lower and upper values of
checks (default: [0, 0.5])


	‘centre’      [x, y] –   centre location for lens (default: sz/2)


	‘offset’      [x, y] –   offset after applying transformations


	‘type’        type   –   is the lens cylindrical or spherical (1d or 2d)


	‘aspect’      aspect –   aspect ratio of lens (default: 1.0)


	‘angle’       angle  –   Rotation angle about axis (radians)


	‘angle_deg’   angle  –   Rotation angle about axis (degrees)


	‘gpuArray’    bool   –   If the result should be a gpuArray












Example usage (see also Fig. 48):

sz = [5,5];
im = otslm.simple.checkerboard(sz);
imagesc(im);






[image: example of a checkerboard pattern]
Fig. 48 Example output from checkerboard().






grid


	
otslm.simple.grid(sz, varargin)

	Generates a grid of points similar to meshgrid.

This function is used by most other otslm.simple functions to create
grids of Cartesian or polar coordinates.  Without any optional
parameters, this function produces a similar result to the Matlab
meshgrid() function but with 0 centred at the centre of the image.


	Usage

	xx, yy = grid(sz, …)

xx, yy, rr, phi = grid(sz, …) calculates polar coordinates.



	Parameters

	
	sz – size of the pattern [rows, cols]






	Optional named parameters

	
	‘centre’      [x, y] –   centre location for lens (default: sz/2)


	‘offset’      [x, y] –   offset after applying transformations


	‘type’        type   –   is the lens cylindrical or spherical (1d or 2d)


	‘aspect’      aspect –   aspect ratio of lens (default: 1.0)


	‘angle’       angle  –   Rotation angle about axis (radians)


	‘angle_deg’   angle  –   Rotation angle about axis (degrees)


	‘gpuArray’    bool   –   If the result should be a gpuArray












Example usage (see also Fig. 49):

sz = [10, 10];
[xx, yy, rr, phi] = otslm.simple.grid(sz);






[image: grid example]
Fig. 49 Example output from grid().






random


	
otslm.simple.random(sz, varargin)

	Generates a image filled with random noise.
The function supports three types of noise: uniform, normally
distributed, and binary.


	Usage

	pattern = random(sz, …) creates a pattern with uniform random
noise values between 0 and 1.  See the ‘type’ argument for other
noise types.



	Parameters

	
	sz – size of the pattern






	Optional named parameters

	
	‘range’ (numeric)     – Range of values (default: [0, 1]).


	‘type’ (enum)         – Type of noise.  Can be ‘uniform’,
‘gaussian’, or ‘binary’.  (default: ‘uniform’)


	‘gpuArray’ (logical)  – If the result should be a gpuArray












Example (see also Fig. 50):

sz = [20, 20];
im = otslm.simple.random(sz, 'type', 'binary');






[image: random output]
Fig. 50 Example output from random().






step


	
otslm.simple.step(sz, varargin)

	Generates a step.
The function is described by


\[ \begin{align}\begin{aligned}f(x) = 0    \qquad   x < 0\\f(x) = 1    \qquad   x \geq 0\end{aligned}\end{align} \]


	Usage

	pattern = step(sz, …) generates a step at the centre of the image.



	Parameters

	sz – size of the pattern



	Optional named parameters

	
	‘value’     [ l, h ]   – low and high values of step (default: [0, 0.5])


	‘centre’      [x, y]   – centre location for pattern


	‘offset’      [x, y]   – offset in rotated coordinate system


	‘aspect’      aspect   – aspect ratio of lens (default: 1.0)


	‘angle’       angle    – Rotation angle about axis (radians)


	‘angle_deg’   angle    – Rotation angle about axis (degrees)


	‘gpuArray’    bool     – If the result should be a gpuArray












Example usage (see also Fig. 51):

sz = [5, 5];
im = otslm.simple.step(sz);






[image: step example]
Fig. 51 Example output from step().








3-D functions

These functions generate a 3-D volume instead of a 2-D image. The size
parameter is a 3 element vector for the x, y, z dimension sizes.


Functions


	aperture3d


	grid3d


	gaussian3d


	linear3d







aperture3d


	
otslm.simple.aperture3d(sz, dimension, varargin)

	Generate a 3-D volume similar to aperture().
Can be used to create a target 3-D volume for beam shape optimisation.


	Usage

	pattern = aperture3d(sz, dimension, …)



	Properties

	
	sz – Size of the pattern [rows, cols, depth]


	dimensions – aperture dimensions (depends on aperture shape)






	Optional named parameters

	
	‘shape’ – Shape of aperture to generate. See supported shapes.


	‘value’       [l, h]    – values for off and on regions (default: [])


	‘centre’      [x, y, z] – centre location for pattern


	‘gpuArray’   (logical)  – If the result should be a gpuArray






	Supported shapes [dimensions]

	
	‘sphere’  [radius]  – Pinhole/circular aperture


	‘cube’    [width]   – Square with equal sides


	‘rect’    [w, h, d] – Rectangle with width and height


	‘shell’   [r1, r2]  – Ring specified by inner and outer radius















grid3d


	
otslm.simple.grid3d(sz, varargin)

	Generates a 3-D grid similar to grid()


	Usage

	[xx, yy, zz] = grid3d(sz, …) Equivalent to mesh grid.

[xx, yy, zz, rr, theta, phi] = grid3d(sz, …)
Additionally, calculates spherical coordinates:



	rr      – Distance from centre of pattern


	theta   – polar angle, measured from +z axis [0, pi]


	phi     – azimuthal angle, measured from +x towards +y axes [0, 2*pi)









	Parameters

	
	sz – size of the pattern [rows, cols]






	Optional named parameters

	
	‘centre’      [x, y, z] –  centre location for lens


	‘gpuArray’    bool      –  If the result should be a gpuArray















gaussian3d


	
otslm.simple.gaussian3d(sz, sigma, varargin)

	Generates a gaussian volume similar to gaussian().

The equation describing the lens is


\[z(r) = s \exp{-r^2/(2\sigma^2)}\]

where \(s\) is a scaling factor and \(\sigma\) describes
the radius of the Gaussian distribution.


	Usage

	pattern = gaussian3d(sz, sigma, …)



	Parameters

	
	sz – size of the pattern [rows, cols, depth]


	sigma – radius of the distribution \(\sigma\).  Can be
a 1 or 3 element vector for the radial or [x, y, z] scaling.






	Optional named parameters

	‘scale’       scale       scaling value for the final pattern
‘centre’      [x, y]      centre location for lens
‘gpuArray’    bool        If the result should be a gpuArray












linear3d


	
otslm.simple.linear3d(sz, spacing, varargin)

	Generates a linear gradient similar to linear()


	Usage

	pattern = linear3d(sz, spacing, …)



	Parameters

	
	sz – size of pattern to generate


	spacing – Inverse slope (1/spacing).  Can be a scalar or a
3 element vector.






	Optional named parameters

	
	‘centre’      [x, y, z] –  centre location for pattern


	‘gpuArray’    bool      –  If the result should be a gpuArray




















          

      

      

    

  

    
      
          
            
  
iter Package

Package containing algorithms and cost functions for iterative
optimisation.  This section is split into two parts,
a description of the optimisation methods and a description of the
objective function classes.


Contents


	Iterative optimisation methods


	Objective functions







Iterative optimisation methods

The package contains a series of iterative optimisation algorithms.
There are currently two types of iterative optimisation algorithms,
methods that attempt to approximate some target far-field and methods
which attempt to combine a series of SLM patterns.
The former can also be used to combine a series of patterns by first
generating a target far-field, for example
using otslm.tools.combine():

lin = otslm.simple.linear(sz, 10);
lg = otslm.simple.linear(sz, -10) + otslm.simple.lgmode(sz, 3, 0);

% Convert to complex amplitudes (could use finalize)
lin = exp(1i*2*pi*lin);
lg = exp(1i*2*pi*lg);

target = otslm.tools.combine({lin, lg}, 'method', 'farfield');





The methods which inherit from IterBase have an objective
function property.
For some methods the objective is required for the method to work,
for other methods the objective is optional and can be used to
track progress of the method.
The objective can be set on construction or by setting the objective
property.  See the Objective functions
section for available objectives.
For an example of how to use these iterative methods, see
examples.iterative, examples.iter_combine and
Gerchberg-Saxton examples.
A minimal example for methods which attempt to generate a particular
far-field is shown below:

sz = [512, 512];
incident = ones(sz);

prop = otslm.tools.prop.FftForward.simpleProp(zeros(sz));
vismethod = @(U) prop.propagate(U .* incident);

target = otslm.simple.aperture(sz, sz(1)/20);
gs = otslm.iter.GerchbergSaxton(target, 'adaptive', 1.0, ...
    'vismethod', vismethod);





Table 1 compares the run-time and required
number of iterations for some of the iterative optimisation methods.
This table is based on
Di Leonardo et al. 2007 [https://doi.org/10.1364/OE.15.001913],
a more detailed discussion can be found in the reference.
This is only a guide, some methods may work better than other methods
under certain circumstances.
For instance, the direct search method
can be used for fine tuning the output of other methods but takes too
long for practical use when given a bad initial guess.
The combination algorithm and 2-D optimisation algorithms have been
combined, actual performance will be different but similar.
There are a range of different extensions to the described methods
which may improve performance for particular problems, such as using a
super-pixel style approach with the Direct Search algorithm.


Table 1 Comparison of iterative methods






	Iterative methods

	Num. Iterations

	Typical Run-time





	Gerchberg-Saxton

	30

	5 s



	Weighted GS

	30

	5 s



	Adaptive-adaptive

	30

	5 s



	Bowman 2017

	< 200

	2 m



	Simulated Annealing

	\(10^4\)

	10 m



	Direct Search

	\(10^9\)

	days







Methods


	GerchbergSaxton


	DirectSearch


	SimulatedAnnealing


	GerchbergSaxton3d


	CombineGerchbergSaxton


	IterBase


	IterCombine


	IterBaseEwald


	bsc


	bowman2017







GerchbergSaxton

The Gerchberg-Saxton algorithm is an iterative algorithm that involves
iterating between the near-field and far-field and applying constraints
to the fields after each iteration.
The constraints could include a particular incident illumination or a
desired far-field intensity or phase pattern.
Components that are not constrained are free to change.
The algorithm was originally described in


R. W. Gerchberg, O. A Saxton W.,
A practical algorithm for the determination of phase from
image and diffraction plane pictures, Optik 35(1971) 237-250 (Nov 1971).




Details about the algorithm can be found on the
Wikipedia page [https://en.wikipedia.org/wiki/Gerchberg%E2%80%93Saxton_algorithm].
A sketch of the algorithm for generating a target amplitude pattern
using a phase-only device is shown below:


	Generate initial guess for the SLM phase pattern \(P\).


	Calculate output for phase pattern: \(\text{Proj}(P) \rightarrow O\).


	Multiply output phase by target amplitude:
\(|T|\frac{O}{|O|} \rightarrow Q\).


	Calculate the complex amplitude required to generate \(Q\):
\(\text{Inv}(Q) \rightarrow I\).


	Calculate new guess from the phase of \(I\):
\(\text{Angle}(I) \rightarrow P\).


	Goto step 2 until converged.




\(\text{Proj}\) and \(\text{Inv}\) are the forward
and inverse propagation methods, these could be, for example, the
forward and inverse Fourier transforms.
A constraint for the incident illumination can be added to the forward
propagator or the constraint can be added at another step.
There are other variants for generating a target phase field or
applying other constraints to the far-field.
If this guess is symmetric, these symmetries will influence the final
output, this can be useful for generating symmetric target fields.

GerchbergSaxton also implements the adaptive-adaptive
algorithm, which we can enable by
setting the adaptive parameter to a non-unity value.
The adaptive-adaptive algorithm is similar to the above except
step 3 mixes the propagator amplitude output with the target amplitude
instead of replacing it


\[ \begin{align}\begin{aligned}t = \alpha |T| + (1 - \alpha) |O|\\Q = t \frac{O}{|O|}\end{aligned}\end{align} \]

where \(\alpha\) is the adaptive-adaptive factor.


	
class otslm.iter.GerchbergSaxton(target, varargin)

	Implementation of Gerchberg-Saxton and Adaptive-Adaptive algorithms
Inherits from IterBase.


	Methods

	
	run()     –  Run the iterative method






	Properties

	
	adaptive  –  Adaptive-adaptive factor (1 for Gerchberg-Saxton)






	Inherited properties

	
	guess     –  Best guess at hologram pattern


	target    –  Target pattern the method tries to approximate


	vismethod –  Method used to do the visualisation


	invmethod –  Method used to calculate initial guess/inverse-visualisation


	objective –  Objective function used to evaluate fitness


	fitness   –  Fitness evaluated after every iteration








See also GerchbergSaxton.


	
GerchbergSaxton(target, varargin)

	Construct a new instance of the GerchbergSaxton iterative method


	Usage

	mtd = GerchbergSaxton(target, …)



	Parameters

	
	target – target pattern






	Optional named arguments

	
	adaptive  num    Adaptive-Adaptive factor.  Default: 1.0, i.e.
the method is Gerchberg-Saxton.


	guess     im     Initial guess at complex amplitude pattern.
If not image is supplied, a guess is created using invmethod.


	vismethod fcn    Function to calculate far-field.  Takes one
argument: the complex amplitude near-field.
Default: @otslm.tools.prop.FftForward.simpleProp.propagate


	invmethod fcn    Function to calculate near-field.  Takes one
argument: the complex amplitude far-field.
Default: @otslm.tools.prop.FftInverse.simpleProp.propagate


	objective fcn    Objective function to measure fitness.
Default: @otslm.iter.objectives.FlatIntensity



















DirectSearch

The direct search algorithm involves choosing a pixel, trying a range
of possible values for that pixel, and keeping the choice which
maximises some objective function.
This is a expensive procedure, on a device with 512x512 pixels and
256 values per pixel, cycling over each pixel requires 67 million
Fourier transforms.
The process is further complicated since the optimal value for any
pixel is not independent of every other pixel.
However, this method can be useful for further improving a good guess,
such as the output of one of the other methods.

A rough outline for the procedure is


	Choose an initial guess, \(P\)


	Randomly select a pixel to modify


	Generate a set of patterns \(P_i\) with a set \(\{i\}\) of
different pixel values.


	Propagate these patterns and calculate the fitness \(F_i\)


	Choose the pattern which maximises the fitness
\(P_j \rightarrow P\) where \(j = \text{argmax}_i F_i\).


	Go to 2 until converged





	
class otslm.iter.DirectSearch(target, varargin)

	Optimiser to search through each pixel value to optimise hologram
Inherits from IterBase.

This method randomly selects a pixel in the pattern and then tries
every available level.  The pixel value kept is the pixel value whic
gives the best fitness.

The algorithm is described in
Di Leonardo, et al., Opt. Express 15, 1913-1922 (2007)


	Methods

	
	run()     –  Run the iterative method






	Properties

	
	levels    –  Discrete levels that will be search in optimisation






	Inherited properties

	
	guess     –  Best guess at hologram pattern


	target    –  Target pattern the method tries to approximate


	vismethod –  Method used to do the visualisation


	invmethod –  Method used to calculate initial guess/inverse-visualisation


	objective –  Objective function used to evaluate fitness


	fitness   –  Fitness evaluated after every iteration








See also DirectSearch and SimulatedAnnealing.


	
DirectSearch(target, varargin)

	Construct a new instance of the DirectSearch iterative method


	Usage

	mtd = DirectSearch(target, …) attempts to produce the target
using the Direct Search algorithm.



	Optional named arguments:

	
	levels    num – Number of discrete phase levels or array of
levels between -pi and pi.  Default: 256.


	guess     im  – Initial guess at complex amplitude pattern.
If not image is supplied, a guess is created using invmethod.


	vismethod fcn – Function to calculate far-field.  Takes one
argument: the complex amplitude near-field.
Default: @otslm.tools.prop.FftForward.simpleProp.propagate


	invmethod fcn – Function to calculate near-field.  Takes one
argument: the complex amplitude far-field.
Default: @otslm.tools.prop.FftInverse.simpleProp.propagate


	objective fcn – Objective function to measure fitness.
Default: @otslm.iter.objectives.FlatIntensity



















SimulatedAnnealing

Simulated annealing is a stochastic method that can be useful for
optimising systems with many degrees of freedom (such as patterns
with many non-independent pixels).
A description of the method can be found on the
wikipedia page [https://en.wikipedia.org/wiki/Simulated_annealing].
The algorithm is analogous to cooling (annealing) of solids and
chooses new state probabilistically depending on a temperature parameter.
An outline follows


	Starting with an initial pattern \(P\) and temperature \(T\)


	Pick a random pattern which is similar to the current pattern


	Compare fitness of two patterns \(F_1\) and \(F_2\)


	Accept the new pattern if \(P(F_1, F_2, T) > \text{rand}(0, 1)\)


	Goto 2 until converged, gradually reducing temperature




There are several parameters that can be chosen which strongly affect
the performance and convergence of the algorithm.
The implementation currently only supports the following function


\[P(F_1, F_2, T) = \exp{-(F_2-F_1)/T}\]

The change in temperature can be controlled via the
temperatureFcn optional parameter.

This implementation could be improved and we welcome suggestions.


	
class otslm.iter.SimulatedAnnealing(target, varargin)

	Optimise the pattern using simulated annealing.
Inherits from IterBase.


	Methods

	
	run()     –  Run the iterative method






	Properties

	
	levels         – Discrete levels that will be search in optimisation


	temperature    – Current temperature of the system


	maxTemperature – Scaling factor for new pattern guesses


	temperatureFcn – Function used to calculate temperature in iteration


	lastFitness    – The fitness associated with the current guess


	guess     –  Best guess at hologram pattern


	target    –  Target pattern the method tries to approximate


	vismethod –  Method used to do the visualisation


	invmethod –  Method used to calculate initial guess/inverse-visualisation


	objective –  Objective function used to evaluate fitness


	fitness   –  Fitness evaluated after every iteration








See also SimulatedAnnealing


	
SimulatedAnnealing(target, varargin)

	Construct a new instance of the SimulatedAnnealing iterative method

mtd = SimulatedAnnealing(target, …) attempts to produce the
target using the Simulated Annealing algorithm.


	Optional named arguments:

	
	levels    num    Number of discrete levels or array of
levels between -pi and pi.  Default: 256.


	temperature num  Initial temperature of the solver.


	guess     im     Initial guess at complex amplitude pattern.
If not image is supplied, a guess is created using invmethod.


	vismethod fcn    Function to calculate far-field.  Takes one
argument: the complex amplitude near-field.
Default: @otslm.tools.prop.FftForward.simpleProp.propagate


	invmethod fcn    Function to calculate near-field.  Takes one
argument: the complex amplitude far-field.
Default: @otslm.tools.prop.FftInverse.simpleProp.propagate


	objective fcn    Objective function to measure fitness.
Default: @otslm.iter.objectives.FlatIntensity













	
static simpleTemperatureFcn(scale, decay)

	Returns a exponentially decaying temperature function

fcn = simpleTemperatureFcn(scale, decay) creates a exponentially
decaying temperature function.  Scale is the initial temperature
and decay is the exponential decay rate.












GerchbergSaxton3d

This function implements the 3-D analog of the Gerchberg-Saxton
method.
The method is described in


Hao Chen et al 2013 J. Opt. 15 035401




and


Graeme Whyte and Johannes Courtial 2005 New J. Phys. 7 117




For an outline of the Gerchberg-Saxton algorithm, see
GerchbergSaxton.


	
class otslm.iter.GerchbergSaxton3d(target, varargin)

	Implementation of 3-D Gerchberg-Saxton and Adaptive-Adaptive algorithms
Inherits from GerchbergSaxton and IterBaseEwald.

This algorithm attempts to recreate the target volume using
the 3-D analog of the Gerchberg-Saxton algorithm.

See Hao Chen et al 2013 J. Opt. 15 035401
and Graeme Whyte and Johannes Courtial 2005 New J. Phys. 7 117


	Methods

	
	run()     –  Run the iterative method






	Properties

	
	adaptive  –  Adaptive-adaptive factor (1 for Gerchberg-Saxton)






	Inherited properties

	
	guess     –  Best guess at hologram pattern


	target    –  Target pattern the method tries to approximate


	vismethod –  Method used to do the visualisation


	invmethod –  Method used to calculate initial guess/inverse-visualisation


	objective –  Objective function used to evaluate fitness


	fitness   –  Fitness evaluated after every iteration








See also GerchbergSaxton3d and GerchbergSaxton.


	
GerchbergSaxton3d(target, varargin)

	Construct a new instance of the GerchbergSaxton3d iterative method


	USage

	mtd = GerchbergSaxton3d(target, …)



	Parameters

	
	target – target pattern to try and generate






	Optional named arguments

	
	adaptive  num – Adaptive-Adaptive factor.  Default: 1.0, i.e.
the method is Gerchberg-Saxton.


	guess     im  – Initial guess at complex amplitude pattern.
If not image is supplied, a guess is created using invmethod.


	vismethod fcn – Function to calculate far-field.  Takes one
argument: the complex amplitude near-field.
Default: @otslm.tools.prop.FftEwaldForward.simpleProp.propagate


	invmethod fcn – Function to calculate near-field.  Takes one
argument: the complex amplitude far-field.
Default: @otslm.tools.prop.FftEwaldInverse.simpleProp.propagate


	objective fcn – Optional objective function to measure fitness.
Default: @otslm.iter.objectives.FlatIntensity



















CombineGerchbergSaxton

This function implements the Gerchberg-Saxton algorithm and similar
iterative optimisers for generating point traps.
The method can be used to combine a set of SLM patterns \(\phi_m\)
into a single pattern in a similar way to otslm.tools.combine().
Starting with an initial guess at the phase pattern \(\phi^0\)
the method proceeds as


\[\phi^{j+1} = \sum_n e^{i \phi_n} \eta_n^j \frac{V_n^j}{|V_n^j|}\]

where


\[V_m^j = \sum_{x,y} e^{i (\phi^j(x, y) - \phi_m(x, y))}\]

and \(x, y\) are the SLM pixel coordinates and \(\eta_n^j\) is
an optional parameter for Adaptive-Adaptive or weighted versions of
the algorithm (for Gerchberg-Saxton \(\eta = 1\)).
To calculate the pattern we simply need to iterative the above equation
for a few steps.

There are two relatively simple extensions to this algorithm.
First is the Adaptive-Adaptive algorithm which involves setting


\[\eta = \alpha + \frac{1-\alpha}{|V_n^j|}\]

where \(\alpha\) is a factor between 0 and 1.
The second extension is the weighted Gerchberg-Saxton algorithm
which involves setting


\[\eta^{j+1} = \eta^j \frac{\langle V_n^j \rangle}{V_n^j}\]

where \(\langle \cdot \rangle\) denotes the average and
we re-calculate \(\eta\) at each iteration starting with
an initial value of 1.

To use the method we need to pass in a set of patterns to combine.
For instance, we could have a set of 2 traps:

lin1 = otslm.simple.linear(sz, 10);
lin2 = otslm.simple.linear(sz, -5);

components = zeros([sz, 2]);
components(:, :, 1) = lin1;
components(:, :, 2) = lin1;





Then to use the iterative method we would run

mtd = otslm.iter.CombineGerchbergSaxton(2*pi*components, ...
   'weighted', true, 'adaptive', 1.0);
mtd.run(10);
imagesc(mtd.phase);





For a more complete example see examples.iter_combine.
A more detailed discussion of these algorithms can be found in


R. Di Leonardo, et al.,
Opt. Express 15 (4) (2007) 1913-1922.
https://doi.org/10.1364/OE.15.001913





	
class otslm.iter.CombineGerchbergSaxton(components, varargin)

	Implementation of Gerchberg-Saxton type combination algorithms.
Inherits from IterCombine.

This includes Gerchberg-Saxton, Adaptive-Adaptive and weighted
GerchbergSaxton algorithms.

For details about these algorithms, see R. Di Leonardo, et al.,
Opt. Express 15 (4) (2007) 1913-1922.
https://doi.org/10.1364/OE.15.001913


	Properties

	
	adaptive (numeric) – adaptive-adaptive factor.


	weighted (logical) – if the method is weighted Gerchberg-Saxton.






	Methods (inherited)

	
	run()         – Run the iterative method


	showFitness() – Show the fitness graph






	Properties (inherited)

	
	components (real: 0, 2*pi) – NxMxD matrix of D patterns to be combined.


	guess      – Best guess at hologram pattern (complex)


	target     – Target pattern for estimating fitness (complex, optional)


	vismethod  – Method used to do the visualisation


	invmethod  – Method used to calculate initial guess/inverse-visualisation


	phase      – Phase of the best guess (real: 0, 2*pi)


	amplitude  – Amplitude of the best guess (real)


	objective  – Objective function used to evaluate fitness or []


	fitness    – Fitness evaluated after every iteration or []








See also CombineGerchbergSaxton and GerchbergSaxton.


	
CombineGerchbergSaxton(components, varargin)

	Construct a new Gerchberg-Saxton combination iterative method.


	Usage

	mtd = IterCombine(components, …)



	Parameters

	
	components (real: 0, 2*pi) – NxMxD array of D phase patterns
to be combined.  Phase patterns should have range [0, 2*pi] or
equivalent.






	Optional named arguments

	
	adaptive  num    Adaptive-Adaptive factor.  Default: 1.0, i.e.
the method is Gerchberg-Saxton.


	weighted (logical) – If the method should use weighted
Gerchberg-Saxton.  Default: false.


	target (complex) – approximate pattern for the target.
This is only used for estimating the current fitness.
Default: otslm.tools.combine(components, 'method', 'farfield').


	guess (complex)  – Initial guess at combination of patterns.
Default: exp(2*pi*1i*random_super) where
random_super = tools.combine(components, 'method', 'rsuper')


	vismethod fcn    Function to calculate far-field.  Takes one
argument: the complex amplitude near-field.
Optional, only used for fitness evaluation.
Default: @otslm.tools.prop.FftForward.simpleProp.propagate


	invmethod fcn    Function to calculate near-field.  Takes one
argument: the complex amplitude far-field.
Optional, not used.
Default: @otslm.tools.prop.FftInverse.simpleProp.propagate


	objective fcn    Objective function to measure fitness.
Default: @otslm.iter.objectives.FlatIntensity



















IterBase

This is the base class for iterative methods.
It is an abstract class and cannot be directly instantiated.
To implement your own iterative method class, inherit from
this class and implement the abstract methods/properties.


	
class otslm.iter.IterBase(varargin)

	Base class for iterative algorithm classes.
Inherits from handle.


	Methods

	
	run()         – Run the iterative method


	showFitness() – Show the fitness graph






	Properties

	
	guess      – Best guess at hologram pattern (complex)


	target     – Target pattern the method tries to approximate (complex)


	vismethod  – Method used to do the visualisation


	invmethod  – Method used to calculate initial guess/inverse-visualisation


	phase      – Phase of the best guess (real: 0, 2*pi)


	amplitude  – Amplitude of the best guess (real)


	objective  – Objective function used to evaluate fitness or []


	fitness    – Fitness evaluated after every iteration or []






	Abstract methods

	
	iteration()  –   run a single iteration of the method









	
IterBase(varargin)

	Constructor for iterative algorithm (abstract) base class


	Usage

	mtd = IterBase(target, …)



	Parameters

	
	target – target pattern to generate






	Optional named arguments

	
	guess     im     Initial guess at complex amplitude pattern.
If not image is supplied, a guess is created using invmethod.


	vismethod fcn    Function to calculate far-field.  Takes one
argument: the complex amplitude near-field.
Default: @otslm.tools.prop.FftForward.simpleProp.propagate


	invmethod fcn    Function to calculate near-field.  Takes one
argument: the complex amplitude far-field.
Default: @otslm.tools.prop.FftInverse.simpleProp.propagate


	objective fcn    Objective function to measure fitness.
Default: @otslm.iter.objectives.FlatIntensity













	
evaluateFitness(mtd, varargin)

	Evaluate the fitness of the current guess


	Usage

	score = mtd.evaluateFitness() visualises the current guess and
evaluate the fitness.

score = mtd.evaluateFitness(guess) evaluate the fitness of the
given guess.  If guess is a stack of matrices, the returned
score is a vector with size(trial, 3) elements.
Guess should be a complex amplitude.










	
run(mtd, num_iterations, varargin)

	Run the method for a specified number of iterations


	Usage

	result = mtd.run(num_iterations, …) run for the specified
number of iterations.



	Parameters

	
	num_iterations (numeric) – Number of iterations






	Optional named arguments

	
	show_progress   bool    display a figure with optimisation progress













	
stopIterations(mtd, src, event)

	Callback for the stop button in showFitness


	Usage

	mtd.stopIterations(…) arguments are ignored.
















IterCombine

This is the base class for iterative methods which combine multiple
input pattern.
It is an abstract class inheriting from IterBase however
not all properties are needed/used by classes inheriting from this
method.
For instance, the CombineGerchbergSaxton class only uses the
vismethod to calculate the fitness when an objective function is
supplied.
If the objective is omitted the method doesn’t calculate the fitness
and doesn’t need vismethod or invmethod.


	
class otslm.iter.IterCombine(components, varargin)

	Base class for iterative combination algorithms.
Inherits from IterBase.

Iterative methods that inherit from this class attempt to combine
a set of SLM phase patterns \(\phi_m\) into a single phase
pattern which generates a far-field phase pattern approximating the
combination of each input phase pattern.

The target field is a optional and is only used for estimating
fitness of the generated pattern.


	Methods (inherited)

	
	run()         – Run the iterative method


	showFitness() – Show the fitness graph






	Properties

	
	components (real: 0, 2*pi) – NxMxD matrix of D patterns to be combined.






	Properties (inherited)

	
	guess      – Best guess at hologram pattern (complex)


	target     – Target pattern for estimating fitness (complex, optional)


	vismethod  – Method used to do the visualisation


	invmethod  – Method used to calculate initial guess/inverse-visualisation


	phase      – Phase of the best guess (real: 0, 2*pi)


	amplitude  – Amplitude of the best guess (real)


	objective  – Objective function used to evaluate fitness or []


	fitness    – Fitness evaluated after every iteration or []






	Abstract methods

	
	iteration()  –   run a single iteration of the method









	
IterCombine(components, varargin)

	Constructor for iterative combination algorithms (abstract) base class


	Usage

	mtd = IterCombine(components, …)



	Parameters

	
	components (real: 0, 2*pi) – NxMxD array of D phase patterns
to be combined.  Phase patterns should have range [0, 2*pi] or
equivalent.






	Optional named arguments

	
	target (complex) – approximate pattern for the target.
This is only used for estimating the current fitness.
Default: otslm.tools.combine(components, 'method', 'farfield').


	guess (complex)  – Initial guess at combination of patterns.
Default: exp(2*pi*1i*random_super) where
random_super = tools.combine(components, 'method', 'rsuper')


	vismethod fcn    Function to calculate far-field.  Takes one
argument: the complex amplitude near-field.
Optional: only used for fitness evaluation.
Default: @otslm.tools.prop.FftForward.simpleProp.propagate


	invmethod fcn    Function to calculate near-field.  Takes one
argument: the complex amplitude far-field.
Optional: not used.
Default: @otslm.tools.prop.FftInverse.simpleProp.propagate


	objective fcn    Objective function to measure fitness.
Default: @otslm.iter.objectives.FlatIntensity



















IterBaseEwald

This is the base class for iterative methods that 3-D Fourier transforms
and an Ewald sphere far-field mapping.
This is class can be combined with IterBase to provide
the 3-D specialisation.
Currently only used by GerchbergSaxton3d.


	
class otslm.iter.IterBaseEwald(target, varargin)

	Abstract base class for 3-D Ewald iterative algorithm classes
Inherits from IterBase.


	Methods

	
	run()      – Run the iterative method






	Properties

	
	guess      – Best guess at hologram pattern (complex, matrix)


	target     – Target pattern the method tries to approximate (volume)


	vismethod  – Method used to do the visualisation


	invmethod  – Method used to calculate initial guess/inverse-visualisation


	phase      – Phase of the best guess (real: 0, 2*pi)


	amplitude  – Amplitude of the best guess (real)


	objective  – Objective function used to evaluate fitness or []


	fitness    – Fitness evaluated after every iteration or []






	Abstract methods

	
	iteration()   –  run a single iteration of the method









	
IterBaseEwald(target, varargin)

	Abstract constructor for 3-D iterative algorithm base class


	Usage

	mtd = IterBaseEwald(target, …) constructs a new instance.
target should be a 3-D volume.  Guess, if supplied, should be
a 2-D matrix for the pattern on the SLM.



	Optional named arguments:

	
	guess     im     Initial guess at complex amplitude pattern.
If no image is supplied, a guess is created using invmethod.


	vismethod fcn    Function to calculate far-field.  Takes one
argument: the complex amplitude near-field.
Default: @otslm.tools.prop.FftEwaldForward.simpleProp.propagate


	invmethod fcn    Function to calculate near-field.  Takes one
argument: the complex amplitude far-field.
Default: @otslm.tools.prop.FftEwaldInverse.simpleProp.propagate


	objective fcn    Objective function to measure fitness.
Default: @otslm.iter.objectives.FlatIntensity



















bsc

This function attempts to optimise the beam using vector spherical
wave functions.  The function may be unstable/change in future
releases but demonstrates how OTT can be used with OTSLM.


	
otslm.iter.bsc(sz, target, varargin)

	Optimisation in vector spherical wave function basis

Requires the optical tweezers toolbox (OTT).


	Usage

	[pattern, beam, coeffs] = bsc(target, …) attempt to produce
target using a phase pattern.  Returns the phase pattern matched
to the beam (bsc) and optimised basis weighting coefficients.



	Parameters

	
	target – target pattern






	Optional named parameters

	
	‘incident’  pattern – Incident illumination on SLM


	‘roi’       func    – Region to optimise (default: roiAll)


	‘basis’     str     – BSC basis to optimise in (default: vswf_lg)


	‘basis_size’ num    – Number of basis functions to use


	‘polarisation’ [x y] – Polarisation of the basis functions


	‘wavelength’ num    – Wavelength in medium [m]


	‘speed’     num     – Speed in medium [m/s]


	‘NA’        num     – Numberical aperture of objective


	‘pixel_size’ num    – Size of pixels in target [m]


	‘method’    str     – Optimisation method to use


	‘radius’    num     – Radius for hologram unwrapping (default: 1.0)















bowman2017

This function provides an interface for
Bowman, et al. Optics Express 25, 11692 (2017) [https://doi.org/10.1364/OE.25.011692].
This requires a suitable Python version and various libraries.
The wrapper may be unstable and will hopefully be improved in future
releases.


	
otslm.iter.bowman2017(target, varargin)

	Wrapper for Bowman 2017 conjugate gradient implementation

See Bowman, et al. Optics Express 25, 11692 (2017)
If you use this method, please consider citing Bowman 2017.


Warning

This wrapper may be unstable and may change
in future releases.




	Usage

	pattern = bowman2017(target, …) attempt to generate the target
using a phase pattern optimised using conjugate gradient method.



	Parameters

	
	target – target pattern to generate






	Optional named parameters

	
	‘guess’       – Initial guess at the phase


	‘iterations’  – Number of iterations (default: 200)


	‘steepness’   – Steepness for Bowman cost function (default: 9.0)


	‘incident’    – Incident illumination (default: ones)


	‘roisize’     – Optimisation region size (default: min(size)/2)

















Objective functions

Objective functions are contained in the otslm.iter.objectives
sub-package. These functions are used with the above optimisation
methods for both optimisation and diagnostics.

To evaluate the fitness (similarity) between a trial pattern and
a target, we can construct a new objective instance and call the
evaluate method.  For example, using the Flatness objective:

% Setup the trial and target
sz = [256, 256];
target = ones(sz);
trial = randn(sz) + 1.0;

% Setup the objective
obj = otslm.iter.objectives.Flatness('target', target);

% Evaluate the fitness
fitness = obj.evaluate(trial);





It is possible to reuse the objective multiple times or test the
trial pattern against a different target pattern when evaluate is called:

new_target = zeros(sz);
fitness = obj.evaluate(trial, new_target);





Objective classes support a region of interest mask.
The region of interest can either be a logical mask or a function
which selects a region of the image, for example:

% Select only half of the image with a function
obj.roi = @(pattern) pattern(1:end/2, :)
fitness = obj.evaluate(trial);

% Use a logical array
obj.roi = otslm.simple.aperture(sz, 128);
fitness = obj.evaluate(trial);






Objectives


	Objective base class


	Bowman2017


	FlatIntensity


	Flatness


	Goorden2014


	Intensity


	RmsIntensity







Objective base class


	
class otslm.iter.objectives.Objective(varargin)

	Abstract base class for optimisation objective functions.

To use this class, you need to inherit from it and implement
the evaluate_internal function.


	Methods

	
	evaluate() – Evaluate the fitness of the specified pattern






	Properties

	
	target (numeric)    – Target pattern to compare with
(or [] for no default).  This is only used if no target is
provided in evaluate().


	type (enum)         – Type of optimisation function (‘min’ or ‘max’)
This property isn’t widely used (may change in future version).
For now, most functions simply have this property set to ‘min’.


	roi (logical|empty|function_handle) – Region of interest to apply to
target and trial.  Must be either a logical array the same size
as target, an empty matrix for no roi, or a function handle.
If roi is a function handle, the function should have the
signature masked = roi(pattern).  Calling the function should
select elements from the pattern for comparison.  The function
is applied to both the target and the trial pattern.






	Abstract methods

	
	evaluate_internal()  – Implementation called by evaluate().
Signature: fitness = obj.evaluate_internal(target, trial).
The roi has already been applied to the trial and target.








See also Objective, Intensity and Flatness.


	
Objective(varargin)

	Construct a new objective function instance


	Usage

	obj = Objective(…) construct a new objective function instance.



	Optional named arguments

	
	roi   [] | logical | function_handle  – specify the roi
to use when evaluating the fitness function.
Can be a logical array or a function handle.
Default: []


	target   [] | matrix – specify the target pattern for this
objective.  If not supplied, the target must be supplied
when the evaluate function is called.
Default: []













	
evaluate(trial, target)

	Evaluate the fitness of the specified trial pattern.


	Usage

	fitness = obj.evaluate(trial, [target]) evaluate the specified
trial pattern.  If target is not specified, uses the internal
target pattern set during construction.



	Parameters

	
	trial (numeric) – pattern to compare to target


	target (numeric) – pattern to compare to trial.  Optional.
Default target is obj.target.



















Bowman2017


	
class otslm.iter.objectives.Bowman2017(varargin)

	Cost function used in Bowman et al. 2017 paper.
Inherits from Objective.


\[C = 10^d * (1.0 - \sum_{nm} \sqrt{I_nm T_nm} \cos(phi_nm - psi_nm))^2\]

target and trial should be the complex field amplitudes.


	Properties

	
	scale     – d scaling factor in cost function


	field     – ‘complex’, ‘phase’, or ‘amplitude’ for optimisation type


	normalize – Normalize target/trial every evaluation








See also Bowman2017 and Intensity.


	
Bowman2017(varargin)

	Construct a new objective function instance


	Usage

	obj = Bowman2017(…) construct a new objective function instance.



	Optional named arguments

	
	scale   num –  d scaling factor in cost function.
Default: 0.5


	field    [char] –  One of ‘complex’, ‘phase’, or ‘amplitude’
for optimisation type.  Default: ‘complex’.


	normalize   bool –   Normalize target/trial every
evaluation.  Default: true.


	roi   [] | logical | function_handle –  specify the roi
to use when evaluating the fitness function.
Can be a logical array or a function handle.
Default: []


	target   [] | matrix – specify the target pattern for this
objective.  If not supplied, the target must be supplied
when the evaluate function is called.
Default: []



















FlatIntensity


	
class otslm.iter.objectives.FlatIntensity(varargin)

	Objective function for pattern flatness and intensity.
Inherits from Intensity and Flatness.

Evaluates the fitness using the Intensity and Flatness method
and adds the result:


	Properties

	
	flatness – scaling factor for pattern flatness








See also FlatIntensity and Bowman2017.


	
FlatIntensity(varargin)

	Construct a new objective function instance


	Usage

	obj = FlatIntensity(…)



	Optional named arguments

	
	roi   [] | logical | function_handle –  specify the roi
to use when evaluating the fitness function.
Can be a logical array or a function handle.
Default: []


	target   [] | matrix – specify the target pattern for this
objective.  If not supplied, the target must be supplied
when the evaluate function is called.
Default: []


	flatness    num –  Scaling factor for pattern flatness.
Default: 0.5.



















Flatness


	
class otslm.iter.objectives.Flatness(varargin)

	Objective function for pattern flatness
Inherits from Objective.

See also Flatness, Intensity and FlatIntensity.


	
Flatness(varargin)

	Construct a new objective function instance


	Usage

	obj = Flatness(…)



	Optional named arguments

	
	roi   [] | logical | function_handle     specify the roi
to use when evaluating the fitness function.
Can be a logical array or a function handle.
Default: []


	target   [] | matrix    specify the target pattern for this
objective.  If not supplied, the target must be supplied
when the evaluate function is called.
Default: []



















Goorden2014


	
class otslm.iter.objectives.Goorden2014(varargin)

	Fidelity function from Goorden, et al. 2014 paper.


\[F = |\textrm{conj}(target) * trial|^2\]

Error is 1 - F.


	Properties

	
	normalize (logical) – True if the patterns should be normalized
by the area (i.e., \(F = F/A^2\)).








See also Goorden2014, Flatness and :class`Bowman2017`.


	
Goorden2014(varargin)

	Construct a new objective function instance


	Usage

	obj = Goorden2014(…)



	Optional named arguments

	
	normalize    logical –  If true, normalized the pattern
by the number of pixels in the pattern.  Default: true.


	roi   [] | logical | function_handle  – specify the roi
to use when evaluating the fitness function.
Can be a logical array or a function handle.
Default: []


	target   [] | matrix – specify the target pattern for this
objective.  If not supplied, the target must be supplied
when the evaluate function is called.
Default: []



















Intensity


	
class otslm.iter.objectives.Intensity(varargin)

	Objective function for pattern intensity.

See also Intensity, Flatness and FlatIntensity.


	
Intensity(varargin)

	Construct a new objective function instance


	Usage

	obj = Intensity(…)



	Optional named arguments

	
	roi   [] | logical | function_handle     specify the roi
to use when evaluating the fitness function.
Can be a logical array or a function handle.
Default: []


	target   [] | matrix    specify the target pattern for this
objective.  If not supplied, the target must be supplied
when the evaluate function is called.
Default: []



















RmsIntensity


	
class otslm.iter.objectives.RmsIntensity(varargin)

	Objective function for pattern RMS intensity
Inherits from Objective.

Evaluates the fitness according to


\[F = \sqrt{\textrm{mean}((|t|^2 - |T|^2)^2)}\]

Where \(t\) and \(T\) are the trial and target pattern
complex amplitudes.

See also RmsIntensity, Intensity and Flatness.


	
RmsIntensity(varargin)

	Construct a new objective function instance


	Usage

	obj = RmsIntensity(…)



	Optional named arguments

	
	roi   [] | logical | function_handle     specify the roi
to use when evaluating the fitness function.
Can be a logical array or a function handle.
Default: []


	target   [] | matrix    specify the target pattern for this
objective.  If not supplied, the target must be supplied
when the evaluate function is called.
Default: []
























          

      

      

    

  

    
      
          
            
  
tools Package

The otslm.tools package is a collection of functions for working with and
combining patterns. This includes tools for visualising patterns,
generating patterns which combine the phase and amplitude information of
a target beam into a single pattern, and various other tools.

These functions are commonly used to modify the output of functions
in the simple Package or the iter Package.
Patterns are represented by 2-D matrices and volumes by 3-D matrices.

This package also contains the prop sub-package.
This package contains classes for simulating the propagation of
patterns.

Some functionality requires the optical tweezers
toolbox [https://github.com/ilent2/ott]. Functions requiring the
toolbox have a note in their documentation (in the Matlab help and this
documentation).



	Functions
	combine

	dither

	encode1d

	finalize

	hologram2volume

	mask_regions

	sample_region

	spatial_filter

	visualise

	bsc2hologram

	colormap

	hologram2bsc

	phaseblur

	volume2hologram

	castValue

	lensesAndPrisms

	make_beam





	prop sub-package
	Propagator base class

	Fft3Forward

	Fft3Inverse

	FftEwaldForward

	FftEwaldInverse

	FftForward

	FftInverse

	FftDebyeForward

	OttForward

	Ott2Forward

	RsForward













          

      

      

    

  

    
      
          
            
  
Functions



	combine


	dither


	encode1d


	finalize


	hologram2volume


	mask_regions


	sample_region


	spatial_filter


	visualise


	bsc2hologram


	colormap


	hologram2bsc


	phaseblur


	volume2hologram


	castValue


	lensesAndPrisms


	make_beam







combine


	
otslm.tools.combine(inputs, varargin)

	Combines multiple patterns

Typical input should be a pattern between 0 and 1.
Most methods output range is between 0 and 1.

For iterative combination methods, see otslm.iter.IterCombine
or generate a target field using the farfield method and use an
otslm.iter.IterBase iterative method.


	Usage

	pattern = combine(inputs, …) combines the cell array of patterns.



	Parameters

	
	inputs (cell) – cell array of input images to combine.
These images should all be the same size.






	Optional named parameters

	
	‘method’ (enum) – Method to use when combining patterns.



	Methods to create multiple beams

	
	dither   –   Randomly chooses values from different patterns


	super    –   Uses phi = angle(sum_ii exp(1i*2*pi*inputs(ii)))


	rsuper   –   Superposition with random offset for each layer






	Methods to modulate a beam pattern

	
	add      –   Adds the patterns: sum_ii inputs(ii)


	multiply –   Multiplies the patterns: prod_ii inputs(ii)


	addangle –   Uses phi = angle(prod_ii exp(1i*2*pi*inputs(ii)))


	average  –   Weighted average of inputs.  (default weights: ones)
\(\sum_i w_i I_i / \sum_i w_i\)






	Miscelanious

	
	farfield –   Calculate farfield sum: sum_ii Prop(inputs(ii)).
This method assumes the input has the currect range for the
propagator.  The default propagator is a FFT, so the inputs
should be complex amplitudes.








Default method: super.






	‘weights’ (numeric) – Array of weights, one for each pattern.
(default: [], uses equal weights for each pattern)


	‘vismethod’ (fcn) – Used by farfield method.
Default: @otslm.tools.prop.FftForward.simpleProp.evaluate.








See also Di Leonardo, Ianni and Ruocco (2007).








dither

The dither() function can be used to convert a continuous gray-scale
image into a binary pattern.
This can be useful for converting gray-scale amplitude images into
binary images for display on a digital micro-mirror device.

The function supports a range of different dither methods including
Matlab’s builtin dither, raw thresholding, random dithering and
using the Floyd-Steinberg algorithm.
The following code example demonstrates a couple of different
methods, the results are shown in Fig. 52.

im = otslm.simple.linear([256, 256], 256);
d1 = otslm.tools.dither(im, 0.5, 'method', 'threshold');
d2 = otslm.tools.dither(im, 0.5, 'method', 'mdither');
d3 = otslm.tools.dither(im, 0.5, 'method', 'floyd');
d4 = otslm.tools.dither(im, 0.5, 'method', 'random');






[image: Example output from the dither method]
Fig. 52 Example output from dither() using different methods.




	
otslm.tools.dither(pattern, level, varargin)

	Creates a binary pattern from gray-scale image.
Supports several different dithering methods.


	Usage

	pattern = dither(pattern, level, …) applies the default dithering,
binary threshold, to the pattern.



	Parameters

	
	pattern (numeric) – the gray-scale pattern.  Most methods
assume the pattern has values in the range 0 to 1.


	level (numeric) – threshold level






	Optional named parameters

	
	‘method’ (enum) – Method to use for dithering. Supported methods:






	‘threshold’ –  Apply threshold filter to image (default)


	‘mdither’   –  Use matlab dither function


	‘floyd’     –  Floyd-Steinberg algorithm


	‘random’    –  Does random dithering








	‘value’    [min, max]   Value range for output image
(default: [] for logical images).  See castValue().















encode1d


	
otslm.tools.encode1d(target, varargin)

	Encode the target pattern amplitude into the phase pattern size


	Usage

	[pattern, assigned] = encode1d(target, …) encodes the complex
target pattern into a 1-D phase mask.
Returns the encoded pattern and a logical matrix of the same size
that specifies if pixels were used to encode the pattern.



	Parameters

	
	target (numeric) – vector containing values of 1-D amplitude function
to be encoded.






	Optional named arguments

	
	‘scale’ (numeric)     – Scale for the height of the pattern


	‘angle’ (numeric)     – Rotation angle about axis (radians)


	‘angle_deg’ (numeric) –  Rotation angle about axis (degrees)















finalize


	
otslm.tools.finalize(pattern, varargin)

	Finalize a pattern, applying a color map and taking the modulo.


	Usage

	pattern = finalize(input, …) finalizes the pattern.
For dmd type devices, the input is assumed to be the amplitude.
For slm type devices, the input is assumed to be the phase.

pattern = finalize(phase, ‘amplitude’, amplitude’, …) attempts
to generate a pattern encoding both the phase and amplitude.



	Parameters

	
	pattern (numeric) – phase pattern to be finalized






	Optional named parameters

	
	‘modulo’ (numeric|enum) – Applies modulo to the pattern.
Modulo should either be a scalar or ‘none’ for no modulo.
(default: 1.0 for slm type devices and ‘none’ for dmd type devices).


	‘colormap’ – Colormap to apply to pattern.  For a list of
valid values, see colormap().
(default: ‘pmpi’ for slm and ‘gray’ for dmd type devices).


	‘rpack’ (enum) – rotation packing of the pixels.






	‘none’  – No additional steps required (default slm)


	‘45deg’ – Device is rotated 45 degrees (aspect 1:2, default dmd)








	‘device’ (enum) – Specifies the type of device, changes the
default value for most arguments.  If all arguments are provided,
this argument has no impact.






	‘dmd’ – Digital micro mirror (amplitude) device


	‘slm’ – Spatial light modulator (phase) device








	‘encodemethod’ method Method to use when encoding phase/amplitude






	‘checker’   – (default) use checkerboard pattern and acos
correction (phase)


	‘grating’   – Use linear grating and sinc correction (phase)


	‘magnitude’ – Use grating magnitude modulation (phase)








	‘amplitude’ pattern Amplitude pattern to generate output for















hologram2volume


	
otslm.tools.hologram2volume(hologram, varargin)

	Generate 3-D volume representation from hologram.

This function is only the inverse of volume2hologram when interpolation
is disabled for both.


	Usage

	volume = hologram2volume(hologram, …) generates a 3-D volume for
2-D complex amplitude hologram.  Unwraps hologram onto Ewald sphere.



	Parameters

	hologram (numeric) – 2-D hologram to map to Ewald sphere.



	Optional named arguments

	
	‘interpolate’ (logical) – Interpolate between the nearest two
pixels in the z-direction.  (default: True)


	‘padding’ (numeric) – Padding in the axial direction (default 0).


	‘focal_length’ (numeric) – focal length in pixels (default: min(size)/2).


	‘zsize’ (size) – size for z depth (default: [])
The total z size is zsize + 2*padding.








See also volume2hologram() and prop.FftEwaldForward








mask_regions


	
otslm.tools.mask_regions(base, patterns, locations, sizes, varargin)

	Adds patterns to base using masking


	Usage

	pattern = mask_region(base, patterns, locations, sizes, …)



	Parameters

	
	base (numeric) – base pattern to mask and add regions to


	patterns (cell) – cell array of patterns to be added.  Each pattern
must be the same size as base.  Patterns should be numeric.


	locations (cell) – cell array containing vectors for the centre
of each mask region.  Must be the same length as patterns.


	sizes – size parameters for each shape (see options below).
Number of sizes must be 1 (for a single shape) or match the
length of patterns.






	Optional named parameters

	
	‘shape’ (cell|enum) – shape to use for masking.  Must either be
a single shape or a cell array of shapes with the same number of
elements as patterns.  Supported shapes and [sizes] include:






	‘circle’    [radius]    Use a circular aperture.


	‘square’    [width]     Square with equal sides.


	‘rect’      [w, h]      Rectangle with width and height.


















sample_region


	
otslm.tools.sample_region(sz, locations, detectors, varargin)

	Generates a pattern for sampling regions on SLM.


	Usage

	pattern = sample_region(sz, locations, detectors, …) generates
the patterns for sampling regions at different SLM locations
onto detectors located at detector locations.  The range for the pattern
is 0 to 1, so the output should be passed to otslm.tools.finalize.



	Parameters

	
	sz (size) – size of the generated pattern [rows, cols]


	locations (cell{numeric}) – cell array of locations in the
generated pattern to place regions.  {[x1, y1], [x2, y2], ...}.
Location shave units of pixels.


	detectors (cell{numeric}) – cell array of numbers describing
the locations in the far-field.  {[x1, y1], [x2, y2], ...}.
This locations are passed into otslm.simple.linear() as
the spacing argument.
Must be the same length as locations or be a single location.
If detectors is a single location, all the patterns will point to
the same detector.








Most optional named parameters can also be cell arrays (or cell arrays of
cell arrays) for different options for each location.


	Optional named parameters

	
	radii (numeric)      – Radius of each SLM region.  Should be
a single element or an array the same length as locations.


	amplitude (enum)     – Specifies a method for amplitude modulation.
See below for a list of methods and arguments.


	ampliutdeargs (cell) – Cell array of arguments to pass to
amplitude method.


	background (enum)    –   Specifies the background type.
Possible values are:






	‘zero’         – Uses 0 phase as the background.


	‘nan’          – Uses NaN phase as the background.


	‘checkerboard’ – Uses a checkerboard for the background.


	‘random’       – Uses noise for the background.


	‘randombin’    – Uses binary noise for the background.









	Possible amplitude methods are

	
	‘step’            – Sharp step between background and pattern.
No parameters.


	‘gaussian_dither’ – Randomly mixes in background.
Parameters:






	‘offset’ (numeric) – offset for dither threshold.


	‘noise’ (numeric)  – scale of uniform noise to add to pattern.








	‘gaussian_noise’   – Adds noise to edge of the pattern.
Parameters:






	‘offset’ (numeric) – Offset.


	‘scale’ (numeric)  – Uniform noise range or Gaussian width.


	‘type’  (enum)     – type of noise, either ‘uniform’ or ‘gaussian’








	‘gaussian_scale’  – Scales the pattern by a Gaussian
and then uses the mix method to combine the pattern with
the background.  The mix method must be ‘add’ for
adding the result to the background, or ‘step’ for
placing the scaled pattern on the background as a step.
Parameters:


	‘mix’ (enum)      – mix method, ‘add’ or ‘step’


	‘mixargs’ (cell)  – arguments for mix method


	‘scale’ (numeric) – scaling factor















spatial_filter


	
otslm.tools.spatial_filter(input, filter, varargin)

	Applies a spatial filter to the image spectrum.
This can be used to simulate imaging or focussing of light using
an objective with different shaped apertures or for adding spherical
aberration to the system.


	Usage

	[output, filtered] = spatial_filter(input, filter, …)
Applies filter to the Fourier transform of input and
calculates the inverse Fourier transform to give output.
Optional output filtered is the filtered pattern.



	Parameters

	
	input (numeric) – image to apply filter to.


	filter (numeric) – a mask pattern to apply to the far-field
of the input.  Should be the same size or smaller than the
output of the forward propagation method.  If it is smaller,
the array is padded with zeros.






	Optional named parameters

	
	vismethod (fcn)   – Function to calculate far-field.  Takes one
argument, the complex amplitude near-field.
Default: @otslm.tools.prop.FftForward.simpleProp.evaluate


	invmethod (fcn)   – Function to calculate near-field.  Takes one
argument: the complex amplitude far-field.
Default: @otslm.tools.prop.FftInverse.simpleProp.evaluate


	gpuArray (logical) – If the result should be a gpuArray.
Default: isa(input, 'gpuarray').








Padding can be controlled by changing the vis and inv methods.

See also examples.liveScripts.booth1998








visualise


	
otslm.tools.visualise(phase, varargin)

	Generates far-field plane images of the phase pattern


	Usage

	[output, …] = visualise(phase, …) visualise the phase plane.
Some methods output additional parameters, such as the ott-toolbox beam.

If phase is an empty array and one of the other images is supplied,
the phase is assumed to be an array of zeros the same size as one of
the other images.

[output, …] = visualise(complex_amplitude, …) visualise the
field with complex amplitude.



	Parameters

	
	phase (real) – The phase image should be in a range from 0 to 2*pi.
If the range is approximately 1 a warning is issued.


	complex_amplitude (complex) – a complex amplitude pattern to
visualise.






	Optional named parameters

	
	‘method’ (enum) – Method to use when calculating visualisation.
Current supported methods:






	‘fft’         Use fourier transform approach described in
https://doi.org/10.1364/JOSAA.15.000857


	‘fft3’        Use 3-D Fourier transform, if original image
is 2-D, converts to volume and takes Fourier transform.
If input is 3-D, directly applies 3-D Fourier transform.


	‘ott’         Use optical tweezers toolbox (OTT).


	‘rs’          Rayleigh-Sommerfeld diffraction formula


	‘rslens’      Use rs to propagate to a lens, apply the lens
phase pattern and propagate some distance from the lens.








	‘type’      type      Type of transformation: ‘nearfield’ or ‘farfield’


	‘amplitude’ image     Specifies the amplitude pattern


	‘incident’  image     Specifies the incident illumination
Default illumination is uniform intensity and phase.


	‘z’         z         z-position of output plane.  For fft/ott this
is an offset from the focal plane.  For rs/rslens, this is the
distance along the beam axis.


	‘padding’   p         Add padding to the outside of the image.
Default: ceil(size(phase)/2)


	trim_padding (logical) – Trim padding before returning result
(default: false).


	NA (numeric)       – Numerical aparture of the lens (default: 0.1)


	resample (numeric) – Number of samples per each pixel
(default: []).















bsc2hologram


	
otslm.tools.bsc2hologram(sz, beam, varargin)

	Calculates the far-field hologram for a BSC beam

Requires the optical tweezers toolbox (OTT).


Warning

The current version of the optical tweezers toolbox
may introduce additional phase artifacts in the far-field.




	Usage

	[phase, cpattern] = bsc2hologram(sz, beam, …) calculates the phase
pattern that transforms the incident beam to the BSC beam.
Additionally, outputs the complex x and y polarisation complex
amplitudes of the BSC beam in the far-field (szx2 matrix).



	Parameters

	
	sz – size of pattern


	beam – Optical tweezers toolbox Bsc beam object






	Optional named parameters

	
	‘incident’      im    – Incident beam complex amplitude (default: ones)


	‘polarisation’  [x y] – Polarisation of incident beam (default: [1 1i])


	‘encodemethod’  str   – Amplitude encode method (see tools.finalize)


	‘radius’        r     – Radius of the hologram pattern (default: 1.0)















colormap


	
otslm.tools.colormap(pattern, cmap, varargin)

	Applies a colormap to a pattern.

This method either applies nearest value interpolation or uses a
predefined lookup table.

If a discrete colormap is provided, only values present in the
colormap are used for the output pattern, allowing the colormap to
contain discrete device specific values.


	Usage

	pattern = colormap(pattern, colormap, …) applies the colormap to
the pattern.  The input pattern should have a typical range from 0 to 1.
If the colormap is a LookupTable, the input pattern is scaled by the
lookup table range.



	Parameters

	
	pattern (numeric) – the pattern to be converted


	colormap (LookupTable|numeric|cell|enum) – colormap to apply.
The way colormaps are applied depends on the colormap type:






	LookupTable – Uses phase, value and range properties of
the utils.LookupTable object.


	numeric – assumes colormap is a vector of equally spaced values
for the phase corresponding to pattern values between 0 and 1.


	cell – assumes colormap is a 2 element cell array.  The first
element is a vector with pattern values (range 0 to 1) and the
second column is the corresponding output values.


	enum – ‘pmpi’, ‘2pi’, ‘bin’ or ‘gray’ for output range between
plus/minus pi, 0 to 2pi, binary, or grayscale (unchanged).









	Optional named parameters

	
	‘inverse’ (logical) – Apply inverse colormap.  The output will have
a typical range from 0 to 1.  Not implemented for all colormap types.















hologram2bsc


	
otslm.tools.hologram2bsc(pattern, varargin)

	Convert 2-D paraxial pattern to beam shape coefficients

This function uses the Optical Tweezers Toolbox BscPmParaxial class
to calculate the beam shape coefficients using point matching.


	Usage

	beam = hologram2bsc(pattern, …) converts the pattern to a BSC beam.
If pattern is real, assumes a phase pattern, else assumes complex amplitude.



	Parameters

	pattern (numeric) – the pattern to convert



	Optional named parameters

	
	incident (numeric)  – Uses the incident illumination


	amplitude (numeric) – Specifies the amplitude of the pattern


	Nmax       num      – The VSWF truncation number


	polarisation [x,y]  – Polarisation of the VSWF beam.
Ignored if pattern is a NxMx2 matrix.  Default [1, 1i].


	radius (numeric)    – Radius of lens back aperture (pixels).
Default min([size(pattern, 1), size(pattern, 2)])/2.


	index_medium num    – Refractive index of medium.
Default 1.0.


	NA           num    – Numerical aperture of objective.
Default 0.9.


	wavelength0  num    – Wavelength of light in vacuum (default: 1)


	omega        num    – Angular frequency of light (default: 2*pi)


	beamData     beam   – Pass an existing Paraxial beam to reuse
the pre-computed special functions.  This requires the previous
beam to have been generated with the keep_coefficient_matrix option.


	keep_coefficient_matrix (logical) – Calculate the inverse coefficient
matrix and store it with the beam.  This is slower for a single
calculation but can be faster for repeated calculation. Default: false.















phaseblur

The phaseblur() function can be used to simulate how a pattern
is affected by cross-talk between the pixels.
For example, the following example shows how the effect of cross-talk
on a checkerboard could be simulated.
Results are shown in Fig. 53.

sz = [128, 128];

% Normal checkerboard
chk = otslm.simple.checkerboard(sz, 'spacing', 10);
chk = otslm.tools.finalize(chk);

% Blurred checkerboard
blur = otslm.tools.phaseblur(chk);

% Simulate far-field
im1 = otslm.tools.visualise(chk, 'trim_padding', true);
im2 = otslm.tools.visualise(blur, 'trim_padding', true);






[image: example output from phaseblur function]
Fig. 53 Checkerboard pattern and simulated far-field (left) and the
same checkerboard pattern after using the phaseblur()
function (right).




	
otslm.tools.phaseblur(pattern, varargin)

	Simulate pixel phase blurring


	Usage

	pattern = phaseblur(pattern, …) applies Gaussian blur to the pattern.



	Parameters

	
	pattern (numeric) – pattern to blur






	Optional named arguments

	
	colormap          – colormap to apply before/after blurring.
For a list of valid values, see colormap(). (default: [])


	invmap (logical)  – apply inverse colormap at end (default: true)


	sigma (numeric)   – size of the Gaussian kernel















volume2hologram


	
otslm.tools.volume2hologram(volume, varargin)

	Generate hologram from 3-D volume by un-mapping the Ewald sphere

This function is only the inverse of hologram2volume() when
interpolation use_weight is disabled and there is no blurring.


	Usage

	hologram = volume2hologram(volume, …) calculates the overlap
of the Ewald sphere with the volume and projects it to a 2-D hologram.



	Parameters

	
	volume (numeric) – 3-D volume to un-map






	Optional named arguments

	
	‘interpolate’ (logical) – interpolate between the nearest two
pixels in the z-direction.  (default: True)


	‘padding’ (numeric)     – padding in the axial direction (default 0).


	‘focal_length’ (numeric) – focal length in pixels (default:
estimated from z)


	‘use_weight’ (logical)  – use weights when sampling interpolated pixels








See also hologram2volume() and prop.FftEwaldForward.








castValue

This function is used to convert from logical patterns to another
data type, such as double or integer.
It is mainly used by functions which create binary masks including
simple.aperture() and simple.step().
When the resulting pattern is used for indexing another pattern,
the output should be logical.
However, if the resulting pattern corresponds to phase or amplitude
values, this function can be used to perform the cast.

For example, to convert from a logical pattern to a pattern with
two discrete integer levels, we could do

in = [false(3, 3), true(3, 3)];
out = otslm.tools.castValue(in, uint8([0, 27]));

% Check that the output class matches the desired class (uint8)
disp(class(out));






	
otslm.tools.castValue(pattern, value)

	Convert from logical pattern to specified value range


	Usage

	pattern = castValue(pattern, value)



	Parameters

	
	pattern (logical) – the pattern to be converted


	value (numeric) – values for logical false and logical true
pattern values.  Should be either a 2 element vector
[false_value, true_value].or an empty array to leave the
values as logical.















lensesAndPrisms

This function implements the lenses and prisms algorithm.
The algorithm can be used to generate multiple spots by adding the
complex amplitude of each pattern together.
The location of each spot is controlled using a lens (for axial position)
or a linear grating (prism, for radial positioning).
The algorithm can be implemented in just a few lines of code using
the toolbox:

sz = [128, 128];

lin1 = otslm.simple.linear(sz, [10, 5]);
len1 = otslm.simple.spherical(sz, sz(1)*2);

lin2 = otslm.simple.linear(sz, [-5, 15]);
len2 = otslm.simple.spherical(sz, -sz(1)*2.7);

pattern = otslm.tools.combine({lin1+len1, lin2+len2}, 'method', 'super');





However, this requires each pattern to be stored in memory until
they can be combined in a single call to combine().
This can become a problem when hundreds of patterns need to be
combined or if running on hardware with limited memory such as a GPU.

The lensesAndPrisms() function is a more memory efficient
implementation of the above.
Firstly, it performs the combination after each pattern has been
created, removing the need to store all the component patterns.
Further, instead of calculating multiple linear gratings and spherical
lenses, the function calculates a single x, y and lens pattern
and scales these patterns to generate a component pattern.
In code, the operation performed is

% Locations of 2 spots (3x2 matrix)
xyz = [1, 2, 3; 4, 5, 6].';

for ii = 1:size(xyz, 2)
   pattern = pattern + exp(1i*2*pi* ...
      (xyz(3, ii)*lens + xyz(1, ii)*xgrad + xyz(2, ii)*ygrad));
end





To use the function, we simply need to pass in a matrix for the
spot locations.  Additionally, we could pass in weights for the
different components or custom patterns for the lens and gratings.
Example output is shown in Fig. 54.

sz = [100, 100];
xyz = [10, 5, 0.1; -3, -2, -0.2] ./ sz(1);
pattern = otslm.tools.lensesAndPrisms(sz, xyz.');






[image: lenses and prisms example output]
Fig. 54 Example output from lensesAndPrisms().




	
otslm.tools.lensesAndPrisms(sz, xyz, varargin)

	Generates a hologram using the Lenses and Prisms algorithm

This function has the same affect as using multiple linear
gratings and spherical lenses combined using otslm.tools.combine.
The advantage of this function is a smaller memory footprint.


	Usage

	pattern = lensesAndPrisms(sz, xyz, …)
The output pattern is in the range [0, 1).  If supplied, the lens,
xgrad and ygrad functions should have range [0, 1).



	Parameters

	
	sz (size) – size of the pattern [rows, cols]


	xyz (numeric) – 3xN matrix for target spot locations.
Each column describes a different target, the first two rows
describe the linear gradient and the final row describes the lens
magnitude.






	Optional named parameters

	
	‘lens’       – pattern to use for lens.
(default: xx^2 + yy^2 where xx and yy are from otslm.simple.grid)


	‘xgrad’      – pattern to use for x gradient.
(default: xx from otslm.simple.grid)


	‘ygrad’      – pattern to use for y gradient.
(default: yy from otslm.simple.grid)


	‘amplitude’  – vector of amplitudes for each location


	‘gpuArray’ (logical) – True if the result should be a gpuArray















make_beam

This function combines the amplitude and phase image into a single
complex amplitude pattern.
Mathematically, the function does


\[U = I \times A \times \exp(i\phi)\]

where \(I\) is the incident illumination, \(\phi\) is the
phase and \(A\) is the amplitude.

The function handles both 2-D patterns and 3-D volumes as well as
a bunch of the size of the patterns and default values for any
empty inputs.


	
otslm.tools.make_beam(phase, varargin)

	Combine the phase, amplitude and incident patterns.


	Usage

	U = make_beam(phase, …) converts the phase pattern with a 2*pi
range into a complex field amplitude.  If phase is already complex
the result is U = phase.



	Parameters

	
	phase (numeric) – pattern to convert






	Named parameters

	
	incident (numeric) – incident illumination.


	amplitude (numeric) – specify amplitude of the field.  Only
used when phase is a real matrix.


















          

      

      

    

  

    
      
          
            
  
prop sub-package

The otslm.tools.prop package contains classes for propagating
the fields.
For simple beam propagation, see tools.visualise().
This documentation contains information on the Propagator base class
and the propagator sub-classes.
The package contains additional base classes for the common code
shared between the forward and inverse methods.

For most propagators there are three methods that can be used to
create a new instance.
The class constructor creates a new instance where you specify
all the options.
The simple and simpleProp static functions create an
instance of the propagator from an input pattern and return
an output image or propagator depending on the method.



	Propagator base class


	Fft3Forward


	Fft3Inverse


	FftEwaldForward


	FftEwaldInverse


	FftForward


	FftInverse


	FftDebyeForward


	OttForward


	Ott2Forward


	RsForward







Propagator base class


	
class otslm.tools.prop.Propagator

	Base class for field propagation methods.

Inherits from handle.  This means that we can reuse the data block
through multiple calls to propagate and easily split our code up
into separate overload-able functions.


	Abstract methods:

	out = propagate(in, …) propagates the complex field amplitudes












Fft3Forward


	
class otslm.tools.prop.Fft3Forward(sz, varargin)

	Propagate using forward 3-D fast Fourier transform


	Methods

	
	Fft3Forward() – construct a new propagator instance


	propagate()   – propagate the field forward using 3-D FFT






	Properties

	
	data       – Memory allocated for transform input


	padding    – Padding around image


	size       – Size of image


	roi        – Region of interest within data for image


	roi_output – Region to crop output image after transformation






	Static methods

	
	simple()     – propagate the field with a simple interface


	simpleProp() – construct the propagator for input pattern








See also Fft3Inverse, FftForward and otslm.tools.visualise.


	
Fft3Forward(sz, varargin)

	Construct a FFT propagator instance

FFT3FORWARD(sz, …) construct a new propagator instance
for the specified pattern size.  sz must be a 3 element vector.


	Optional named arguments:

	
	padding    num | [xy, z] | [x, y, z] padding to add to edges of
the image.  Either a single number for uniform padding,
two numbers for separate axial and radial padding,
or three numbers for x, y and z padding.
Default: ceil(sz/2)


	trim_padding   bool   if the output_roi should be set
to remove the padding added before the transform.
Default: false.


	gpuArray   bool    if true, allocates memory on the GPU
and does the transform with the GPU instead of the CPU.
Default: false.













	
static simple(pattern, varargin)

	propagate the field with a simple interface

[output, prop] = simple(pattern, …) construct a new FFT
propagator and apply it to the pattern.  Returns the
propagated pattern and the propagator.

See also simpleProp() for named arguments.






	
static simpleProp(pattern, varargin)

	Generate the propagator for the specified pattern.

prop = simpleProp(pattern, …) construct a new propagator.


	Optional named arguemnts:

	
	padding  num | [num, num]  Padding for transform.
For details, see FftForward.  Default: ceil(size(pattern)/2)


	trim_padding   bool   if padding should be trimmed from output.
Default: true.


	gpuArray    bool     if we should use the GPU.
Default: isa(pattern, 'gpuArray')



















Fft3Inverse


	
class otslm.tools.prop.Fft3Inverse(sz, varargin)

	Propagate using inverse 3-D fast Fourier transform


	Methods

	
	Fft3Inverse() –  construct a new propagator instance


	propagate()   –  propagate the field forward using 3-D FFT






	Properties

	
	data       – Memory allocated for transform input


	padding    – Padding around image


	size       – Size of image


	roi        – Region of interest within data for image


	roi_output – Region to crop output image after transformation






	Static methods

	
	simple()     – propagate the field with a simple interface


	simpleProp() – construct the propagator for input pattern








See also Fft3Forward, FftInverse and otslm.tools.visualise.


	
Fft3Inverse(sz, varargin)

	Construct a FFT propagator instance

FFT3INVERSE(sz, …) construct a new propagator instance
for the specified pattern size.  sz must be a 3 element vector.


	Optional named arguments:

	
	padding    num | [xy, z] | [x, y, z] padding to add to edges of
the image.  Either a single number for uniform padding,
two numbers for separate axial and radial padding,
or three numbers for x, y and z padding.
Default: ceil(sz/2)


	trim_padding   bool   if the output_roi should be set
to remove the padding added before the transform.
Default: false.


	gpuArray   bool    if true, allocates memory on the GPU
and does the transform with the GPU instead of the CPU.
Default: false.













	
static simple(pattern, varargin)

	propagate the field with a simple interface

[output, prop] = simple(pattern, …) construct a new FFT
propagator and apply it to the pattern.  Returns the
propagated pattern and the propagator.

See also simpleProp for named arguments.






	
static simpleProp(pattern, varargin)

	Generate the propagator for the specified pattern.

prop = simpleProp(pattern, …) construct a new propagator.


	Optional named arguemnts:

	
	padding  num | [num, num]  Padding for transform.
For details, see FftForward.  Default: ceil(size(pattern)/2)


	trim_padding   bool   if padding should be trimmed from output.
Default: true.


	gpuArray (logical) – if we should use the GPU.
Default: isa(pattern, 'gpuArray')



















FftEwaldForward


	
class otslm.tools.prop.FftEwaldForward(sz, varargin)

	Propagate using forward Ewald sphere and 3-D FFT.
Inherits from EwaldBase and Fft3Forward.

Ewald surfaces are described in


Gal Shabtay, Three-dimensional beam forming and Ewald surfaces,
Optics Communications, Volume 226, Issues 16, 2003, Pages 33-37,
https://doi.org/10.1016/j.optcom.2003.07.056.




and


P.P. Ewald, J. Opt. Soc. Am., 9 (1924), p. 626





	Methods

	
	FftEwaldForward()  – construct a new propagator instance


	propagate()        – propagate the field






	Properties

	
	data        – Memory allocated for transform input (3-D)


	padding     – Padding around image [x, y, z]


	size        – Size of image [x, y, z]


	roi         – Region of interest within data for image


	roi_output  – Region to crop output image after transformation


	focal_length – Focal length of the lens






	Static methods

	
	simple()       – propagate the field with a simple interface


	simpleProp()   – construct the propagator for input pattern








See also FftEwaldInverse, FftForward and otslm.tools.visualise.


	
FftEwaldForward(sz, varargin)

	Construct a Ewald sphere FFT propagator instance

FFTEWALDFORWARD(sz, …) construct a new propagator instance
for the specified pattern size.  sz must be a 3 element vector.


	Optional named arguments:

	
	focal_length   num   focal length of the lens in pixels.
Default: min(sz/2).


	interpolate   bool   If the Ewald mapping should interpolate.
Default: true.


	padding    num | [xy, z] | [x, y, z] padding to add to edges of
the image.  Either a single number for uniform padding,
two numbers for separate axial and radial padding,
or three numbers for x, y and z padding.
Default: ceil(sz/2).


	trim_padding   bool   if the output_roi should be set
to remove the padding added before the transform.
Default: false.


	gpuArray   bool    if true, allocates memory on the GPU
and does the transform with the GPU instead of the CPU.
Default: false.













	
static simple(pattern, varargin)

	propagate the field with a simple interface

[output, prop] = simple(pattern, …) construct a new
propagator and apply it to the pattern.  Returns the
propagated pattern and the propagator.

See also simpleProp for named arguments.






	
static simpleProp(pattern, varargin)

	Generate the propagator for the specified pattern.

prop = simpleProp(pattern, …) construct a new propagator.


	Optional named arguemnts:

	
	diameter    num     Diameter of the lens.
Default: min(size(pattern))


	zsize       num     Depth of the FFT volume.
Default: Calculated from focal_length and diameter


	focal_length  num   Set the focal length of the lens.
Default: diameter/2 (unless NA is set)


	NA          num     Set the focal length via NA.
Default: [] (i.e. defer to focal_length default)


	interpolate   bool   If the Ewald mapping should interpolate.
Default: true.


	padding  num | [xy, z] | [x, y, z]  Padding for transform.
For details, see FftEwaldForward.
Default: ceil([size(pattern), zsize]/2)


	trim_padding   bool   if padding should be trimmed from output.
Default: true.


	gpuArray    bool     if we should use the GPU.
Default: isa(pattern, ‘gpuArray’)



















FftEwaldInverse


	
class otslm.tools.prop.FftEwaldInverse(sz, varargin)

	Propagate using inverse Ewald sphere and 3-D FFT.
Inherits from EwaldBase and Fft3Inverse.

Ewald surfaces are described in


Gal Shabtay, Three-dimensional beam forming and Ewald surfaces,
Optics Communications, Volume 226, Issues 16, 2003, Pages 33-37,
https://doi.org/10.1016/j.optcom.2003.07.056.




and


P.P. Ewald, J. Opt. Soc. Am., 9 (1924), p. 626





	Methods

	
	FftEwaldInverse() – construct a new propagator instance


	propagate()       – propagate the field






	Properties

	
	data        – Memory allocated for transform input (3-D)


	padding     – Padding around image [x, y, z]


	size        – Size of image [x, y, z]


	roi         – Region of interest within data for image


	roi_output  – Region to crop output image after transformation


	focal_length – Focal length of the lens






	Static methods

	
	simple()       – propagate the field with a simple interface


	simpleProp()   – construct the propagator for input pattern








See also FftEwaldForward, FftInverse and otslm.tools.visualise.


	
FftEwaldInverse(sz, varargin)

	Construct a Ewald inverse FFT propagator instance.

FFTEWALDINVERSE(sz, …) construct a new propagator instance
for the specified pattern size.  sz must be a 3 element vector.


	Optional named arguments:

	
	focal_length   num   focal length of the lens in pixels.
Default: ((min(sz(1:2))/2).^2 + sz(3).^2)/(2*sz(3))


	interpolate   bool   If the Ewald mapping should interpolate.
Default: true.


	padding    num | [xy, z] | [x, y, z] padding to add to edges of
the image.  Either a single number for uniform padding,
two numbers for separate axial and radial padding,
or three numbers for x, y and z padding.
Default: ceil(sz/2)


	trim_padding (logical) – if the output_roi should be set
to remove the padding added before the transform.
Default: false.


	gpuArray (logical) – if true, allocates memory on the GPU
and does the transform with the GPU instead of the CPU.
Default: false.













	
static simple(pattern, varargin)

	propagate the field with a simple interface

[output, prop] = simple(pattern, …) construct a new Ewald FFT
propagator and apply it to the pattern.  Returns the
propagated pattern and the propagator.

See also simpleProp for named arguments.






	
static simpleProp(pattern, varargin)

	Generate the propagator for the specified pattern.

prop = simpleProp(pattern, …) construct a new propagator.


	Optional named arguemnts:

	
	padding   num | [xy, z] | [x, y, z]  Padding for transform.
For details, see FftEwaldInverse().
Default: ceil(size(pattern)/2)


	trim_padding   bool   if padding should be trimmed from output.
Default: true.


	gpuArray    bool     if we should use the GPU.
Default: isa(pattern, ‘gpuArray’)



















FftForward


	
class otslm.tools.prop.FftForward(sz, varargin)

	Propagate using forward 2-D fast Fourier transform


	Methods

	
	FftForward()  –  construct a new propagator instance


	propagate()   –  propagate the field forward using 2-D FFT






	Properties

	
	data       – Memory allocated for transform input


	lens       – Lens to be applied before transformation


	padding    – Padding around image


	size       – Size of image


	roi        – Region of interest within data for image


	roi_output – Region to crop output image after transformation






	Static methods

	
	simple()      –  propagate the field with a simple interface


	simpleProp()  –  construct the propagator for input pattern


	calculateLens() – lens function used by simple and FftInverse.simple.








See also FftInverse, Fft3Forward and otslm.tools.visualise.


	
FftForward(sz, varargin)

	FFTFORWARD Construct a FFT propagator instance

FFTFORWARD(sz, …) construct a new propagator instance
for the specified pattern size.  sz must be a 2 element vector.


	Optional named arguments

	
	padding    num | [num, num] –  padding to add to edges of
the image.  Either a single number for uniform padding
or two numbers to pass to padarray().
Default: ceil(sz/2)


	lens       pattern  –  lens function to add to the transform.
This can be useful for shifting the pattern in the axial
direction.  Pattern should have same size as sz + padding.
The lens function should be a complex field amplitude.
Default: [].


	trim_padding (logical) – if output_roi should be set
to remove the padding added before the transform.
Default: false.


	gpuArray (logical) – if true, allocates memory on the GPU
and does the transform with the GPU instead of the CPU.
Default: false.













	
static simple(pattern, varargin)

	propagate the field with a simple interface

[output, prop] = simple(pattern, …) construct a new FFT
propagator and apply it to the pattern.  Returns the
propagated pattern and the propagator.

See also simpleProp for input arguments.






	
static simpleProp(pattern, varargin)

	Generate the propagator for the specified pattern.

prop = simpleProp(pattern, …) construct a new propagator.


	Optional named arguemnts:

	
	axial_offset    num   Offset along the propagation axis
Default: 0.0.


	NA         num     Numerical aperture for axial offset lens.
Default: 0.1.


	padding  num | [num, num]  Padding for transform.
For details, see FftForward.  Default: ceil(size(pattern)/2)


	trim_padding   bool   if padding should be trimmed from output.
Default: true.


	gpuArray    bool     if we should use the GPU.
Default: isa(pattern, ‘gpuArray’)



















FftInverse


	
class otslm.tools.prop.FftInverse(sz, varargin)

	Propagate using inverse 2-D fast Fourier transform


	Methods

	
	FftInverse()  –  construct a new propagator instance


	propagate()   –  propagate the field using 2-D inverse FFT






	Properties

	
	data       – Memory allocated for transform input


	lens       – Lens to be applied after transformation


	padding    – Padding around image


	size       – Size of image


	roi        – Region of interest within data for image


	roi_output – Region to crop output image after transformation






	Static methods

	
	simple()       – propagate the field with a simple interface


	simpleProp()   – construct the propagator for input pattern


	calculateLens() – lens function used by simple and FftInverse.simple.








See also FftForward, Fft3Inverse and otslm.tools.visualise.


	
FftInverse(sz, varargin)

	Construct a inverse FFT propagator instance

FFTINVERSE(sz, …) construct a new propagator instance
for the specified pattern size.  sz must be a 2 element vector.


	Optional named arguments:

	
	padding    num | [num, num]   padding to add to edges of
the image.  Either a single number for uniform padding
or two numbers to pass to the padarray function.
Default: ceil(sz/2)


	lens       pattern    lens function added after transformation.
This can be useful for shifting the pattern in the axial
direction.  Pattern should have same size as sz + padding.
The lens function should be a complex field amplitude.
Default: [].


	trim_padding (logical) – if output_roi should be set
to remove the padding added before the transform.
Default: false.


	gpuArray (logical) – if true, allocates memory on the GPU
and does the transform with the GPU instead of the CPU.
Default: false.













	
static simple(pattern, varargin)

	propagate the field with a simple interface

[output, prop] = simple(pattern, …) construct a new inverse FFT
propagator and apply it to the pattern.  Returns the
propagated pattern and the propagator.

See also simpleProp for named arguments.






	
static simpleProp(pattern, varargin)

	Generate the propagator for the specified pattern.

prop = simpleProp(pattern, …) construct a new propagator.


	Optional named arguemnts

	
	axial_offset    num   Offset along the propagation axis
Default: 0.0.


	NA         num     Numerical aperture for axial offset lens.
Default: 0.1.


	padding  num | [num, num]  Padding for transform.
For details, see FftForward.  Default: ceil(size(pattern)/2)


	trim_padding   bool   if padding should be trimmed from output.
Default: true.


	gpuArray    bool     if we should use the GPU.
Default: isa(pattern, ‘gpuArray’)



















FftDebyeForward


	
class otslm.tools.prop.FftDebyeForward(sz, varargin)

	Propagate using forward 2-D FFT formulation of Debye integral.
Inherits from FftForward.

This method is useful for simulating focusing of paraxial fields
by high numerical aperture (NA) objectives.  The method accounts for
some of the polarisation and phase affects present in high NA focussing.

The method and conditions for obtaining acurate results are
described in


M. Leutenegger, et al., Fast focus field calculations,
Optics Express Vol. 14, Issue 23, pp. 11277-11291 (2006)
https://doi.org/10.1364/OE.14.011277





	Methods

	
	FftForward()  –  construct a new propagator instance


	propagate()   –  propagate the field forward using 2-D FFT






	Properties

	
	NA         – Numerical aperture of lens


	radius     – Radius of lens


	polarisation – Default polarisation for scalar input to propagate






	Properties (inherited)

	
	data       – Memory allocated for transform input


	lens       – Lens to be applied before transformation


	padding    – Padding around image


	size       – Size of image


	roi        – Region of interest within data for image


	roi_output – Region to crop output image after transformation






	Static methods

	
	simple()      –  propagate the field with a simple interface


	simpleProp()  –  construct the propagator for input pattern


	calculateLens() – generates the lens required by the method








See also FftForward, Fft3Forward and OttForward


	
FftDebyeForward(sz, varargin)

	Construct a FFT Debye forward propagator instance.


	Usage

	obj = FftDebyeForward(sz, …) construct a new propagator
instance for the specified pattern size.  sz must be a 2
element vector.



	Optional named arguments

	
	polarisation  [num, num]  – X and Y polarisation to use
when propagate() is called with only a single argument.
Default: [1.0, 0.0].


	NA (numeric)    – Numerical aperture for axial offset lens.
Default: 1.0.


	radius (numeric) – Radius of lens.
Default: min(sz)/2.


	padding    num | [num, num] –  padding to add to edges of
the image.  Either a single number for uniform padding
or two numbers to pass to padarray().
Default: ceil(sz/2)


	lens (complex)      –  lens pattern to add to the transform.
This should typically be a result of calculateLens().
Pattern should have same size as sz + padding.
The lens function should be a complex field amplitude.
Default: [].


	trim_padding (logical) – if output_roi should be set
to remove the padding added before the transform.
Default: false.


	gpuArray (logical) – if true, allocates memory on the GPU
and does the transform with the GPU instead of the CPU.
Default: false.













	
static calculateLens(sz, NA, radius, z)

	Calculate lens function for FftDebyeForward.

The lens function is given by

where \(\theta = \arcsin(r)\) and \(r\) is the normalized
radius of the lens.


	Usage

	lens = calculateLens(sz, NA, radius, z)



	Parameters

	
	sz (size) – Size of the pattern [rows, cols].


	NA (numeric) – Numerical aperture of lens.
Assumes medium has refractive index of 1.  NA should be
adjusted if medium has different refractive index (NA/n_medium).


	radius (numeric) – Radial scaling factor for lens.
(units: pixels).


	z (numeric) – Axial offset (units: inverse wavelength
in medium).













	
propagate(input, varargin)

	Propagate the input image


	Usage

	output = propagate(input, …) propagates the complex input
image using 2-D FFT formulation of the Debye integral.
Returns a NxMx3 matrix for the complex vector field at the focus.



	Parameters

	
	input (numeric) – paraxial far-field image.
Should either be a NxM or NxMx2 matrix.
If the matrix is single channel, the method polarisation
property is used.













	
static simple(pattern, varargin)

	propagate the field with a simple interface

[output, prop] = simple(pattern, …) construct a new FftDebye
propagator and apply it to the pattern.  Returns the
propagated pattern and the propagator.

See also simpleProp() for input arguments.






	
static simpleProp(pattern, varargin)

	Generate the propagator for the specified pattern.

prop = simpleProp(pattern, …) construct a new propagator.


	Optional named arguments:

	
	polarisation  [num, num]  – X and Y polarisation to use
when propagate() is called with only a single argument.
Default: [1.0, 0.0].


	axial_offset    num   Offset along the propagation axis
Default: 0.0.


	NA         num     Numerical aperture for axial offset lens.
Default: 1.0.


	radius (numeric) – Radius of lens.
Default: min(size(pattern))/2.


	padding  num | [num, num]  Padding for transform.
For details, see FftForward.  Default: ceil(size(pattern)/2)


	trim_padding   bool   if padding should be trimmed from output.
Default: true.


	gpuArray    bool     if we should use the GPU.
Default: isa(pattern, ‘gpuArray’)



















OttForward


	
class otslm.tools.prop.OttForward(sz, varargin)

	Propagate the field using the optical tweezers toolbox

Requires the optical tweezers toolbox (OTT).


	Properties

	
	size          – Size of input beam image


	beam_data     – Beam with saved data for repeated computations


	Nmax          – Nmax for VSWF


	polarisation  – Polarisation of beam (jones vector)


	index_medium  – Refractive index in medium


	NA            – Numerical aperture


	wavelength0   – Wavelength in vacuum


	omega         – Angular frequency of light






	Static methods

	
	simple()      –  propagate the field with a simple interface


	simpleProp()  –  construct the propagator for input pattern








See also Ott2Forward and otslm.tools.visualise.


	
OttForward(sz, varargin)

	OTTFORWARD Construct a new propagator instance


	Usage

	prop = OttForward(sz, …) construct a new propagator instance.



	Parameters

	
	sz (size) – 2 element vector for the far-field size.






	Optional named arguments

	
	pre_calculate   bool   If beam_data should be set at
construction or at first use of propagate().
Defalut: true


	beam_data     ott.Bsc  Beam object to use instead of
calculating the VSWF expansion.  Incompatible with
pre_calculate.   Default: []


	Nmax         num      The VSWF truncation number


	polarisation [x,y]    Default polarisation of the VSWF beam.
Only used for single channel input images.
Default [1, 1i].


	radius (numeric)   – Radius of lens aperture.
Default: min(sz)/2.


	index_medium num      Refractive index of medium


	NA           num      Numerical aperture of objective


	wavelength0  num      Wavelength of light in vacuum (default: 1)


	omega        num      Angular frequency of light (default: 2*pi)













	
static simple(pattern, varargin)

	SIMPLE propagate the field with a simple interface

[output, prop] = simple(pattern, …) propagates the 2-D
complex field amplitude pattern using the optical tweezers
toolbox.  Returns the beam and the propagator.

Additional named arguments are passed to Ott2Forward.






	
static simpleProp(pattern, varargin)

	Generate the propagator for the specified pattern.

prop = simpleProp(pattern, …) construct a new propagator.

Additional named arguments are passed to Ott2Forward.












Ott2Forward


	
class otslm.tools.prop.Ott2Forward(sz, varargin)

	Propagate the field using the optical tweezers toolbox.
Provides a wrapper to calculate the 2-D field after beam calculation.

Requires the optical tweezers toolbox (OTT).


	Properties

	
	axis         – Axis perpendicular to output image plane


	offset       – Offset along axial direction


	field        –  Type of field to calculate


	output_size  – Size of the output image


	range        – Range of values to calculate field over






	Inherited properties

	
	size         – Size of input beam image


	beam_data    – Beam with saved data for repeated computations


	Nmax         – Nmax for VSWF


	polarisation – Polarisation of beam (jones vector)


	index_medium – Refractive index in medium


	NA           – Numerical aperture


	wavelength0  – Wavelength in vacuum


	omega        – Angular frequency of light






	Static methods

	
	simple()      –  propagate the field with a simple interface


	simpleProp()  –  construct the propagator for input pattern








See also OttForward, FftForward and otslm.tools.visualise.


	
Ott2Forward(sz, varargin)

	OTT2FORWARD Construct a new propagator instance


	Usage

	prop = Ott2Forward(sz, …) construct a new propagator instance.



	Parameters

	
	sz (size) – size of the pattern in far-field [rows, cols]






	Optional named arguments

	
	axis (enum)   –   ‘x’, ‘y’ or ‘z’ for axis perpendicular to
image.  Default: z.


	offset (numeric) – Offset along axial direction.
Default: 0.0.


	field (enum)     –  Field to calculate.
See ott.Bsc.visualise() for a list of valid parameters.
Default: ‘irradiance’.


	output_size  [num, num] –  Size of output image.
Default: [80, 80]


	range     [ x, y ]    Range of points to visualise.
Can either be a cell array { x, y }, two scalars for
range [-x, x], [-y, y] or 4 scalars [ x0, x1, y0, y1 ].
Default: []  (parameter is omitted, see ott.Bsc.visualise)


	pre_calculate (logical) – If beam_data should be set at
construction or at first use of propagate().
Defalut: true













	
static simple(pattern, varargin)

	SIMPLE propagate the field with a simple interface

[output, prop] = simple(pattern, …) propagates the 2-D
complex field amplitude pattern using the optical tweezers
toolbox.  Returns the field in the specified output plane
and the propagator.  The propagator contains the OTT.Bsc
beam.

Additional named arguments are passed to Ott2Forward.






	
static simpleProp(pattern, varargin)

	Generate the propagator for the specified pattern.

prop = simpleProp(pattern, …) construct a new propagator.

Additional named arguments are passed to Ott2Forward.












RsForward


Warning

This method may be unstable.




	
class otslm.tools.prop.RsForward(sz, distance, varargin)

	Propagate the field forward using Rayleight-Sommerfeld integral


	Properties

	
	size     – Size of the pattern


	distance – Distance to propagate pattern






	Static methods

	
	simple()      –  propagate the field with a simple interface


	simpleProp()  –  construct the propagator for input pattern








See also FftForward, OttForward and otslm.tools.visualise.


	
RsForward(sz, distance, varargin)

	RSFORWARD Construct a new propagator instance

obj = RsForward(sz, distance, …) construct a propagator
instance for the specified image size and propagation distance.
distance must be a scalar, sz must be a 2 element vector.






	
static simple(pattern, distance, varargin)

	SIMPLE propagate the field with a simple interface

output = simple(pattern, distance, …) propagates the 2-D
complex field amplitude pattern using the Rayleigh-Sommerfeld
integral by the specified distance.

See also simple and RsForward.






	
static simpleProp(pattern, distance, varargin)

	Generate the propagator for the specified pattern.

prop = simpleProp(pattern, …) construct a new propagator.

See also simple and RsForward.















          

      

      

    

  

    
      
          
            
  
utils Package

The otslm.utils package contains functions for controlling,
interacting with and simulating hardware.

Hardware (and simulated hardware) is represented by classes inheriting
from the Showable and Viewable base classes.
Test* devices
are used for simulating non-physical devices, these are used mainly for
testing algorithms. For converting from a [0, 2*pi) phase range to a
device specific lookup table, the LookupTable
class can be used.
This package contains three sub-packages containing
imaging algorithms,
calibration methods and the
RedTweezers interface.



	LookupTable


	imaging


	calibration


	RedTweezers


	Base classes of showable and viewable objects


	Physical devices


	Non-physical devices







LookupTable


	
class otslm.utils.LookupTable(phase, value, varargin)

	Class representing the phase and pixel values of a lookup table.

Lookup tables can be used by Showable devices, otslm.tools.finalize
and otslm.tools.colormap.


	Methods

	
	load    –  load a human readable lookup table from a file


	save    –  save a human readable lookup table to a file.


	sorted  –  Returns a new lookup table sorted by phase


	resample – Re-sampled lookup table at the specified phases


	linearised – New re-sampled lookup with evenly spaced phase values


	valueMinimised – Arrange lookup table so values are ascending






	Properties

	
	phase   –  phase values in lookup table [Nx1 matrix]


	value   –  pixel values in lookup table [NxM matrix]


	range   –  range of the lookup table (for phase based tables)








See also LookupTable, otslm.tools.finalize() and Showable


	
LookupTable(phase, value, varargin)

	Construct a new LookupTable instance


	Usage

	lt = LookupTable(phase, value, …)



	Parameters

	
	phase (numeric) – [Nx1] vector with phase values


	value (numeric) – [NxM] values to map phase too






	Optional named arguments

	
	range (numeric) – The range of the look up table.  This will
typically be either 1 or 2*pi depending on if the lookup
table is normalized or un-normalized.  The actual ranges
of phase values may be less or greater than this range.













	
linearised(lt, numpts, varargin)

	Generates a new lookup table with evenly spaced values


	Usage

	nlt = lt.linearised(numpts, …) generates a resampled
lookup table with evenly spaced values.



	Parameters

	
	numpts (numeric) – number of evenly spaced values.






	Optional named arguments

	
	range (numeric)    – range to re-sample [min, max].
(default: [min(lt.phase), max(lt.phase)]).


	periodic (logical) – specifies if the range is periodic, if
so, the end points count as the same point.  Default false.













	
static load(filename, varargin)

	Load a lookup table from a file

This is useful if you want to use the lookup table in another
program.  Otherwise, the recommended way to save a lookup
table is by using the matlab save function.


	Usage

	lt = LookupTable.load(filename, …) loads the lookup table.



	Parameters

	filename (char) – filename for lookup table to load



	Optional named arguments

	
	‘channels’    channels    Array of columns numbers in input file
0 correspond to 0 in output.  Negative values correspond to
columns in reverse order.


	‘phase’       column      Column of input file taken as phase
value.  If omitted, i.e. [], assumes 0 to 2*pi linear
phase range.


	‘oformat’     format      Output format string (default: uint8)


	‘format’      format      Input format handle (default @uint8)


	‘mask’        mask        Mask for input format (default: none)


	‘morder’      order       Array for order of bits in mask
length should be 8, (0: zero bit, 1:8 mask bit, other: one bit).
1:8 is normal bit order, 8:-1:1 is reverse order.


	‘delim’       delim       Deliminator in input file


	‘nheaderlines’ num        Number of header lines in file








The number of channels in the output is determined by the length
of the channels array.  Each element in the channels array determines
which column of the input file (starting at 1) is used to generate
the channel data.  A value of 0 means that this channel is empty.

The format argument specifies the input data type for each column.
Data is read, cast to this type, and then the mask is applied.
The output value is then calculated as a uint8 from the bits
that were masked using the morder argument.


	Example

	Load a 16-bit lookup table with values assigned to the first two
channels.  The input file has two columns, we use the second.

lookup_table = 'LookupTable.txt';
colormap = otslm.utils.LookupTable.load(lookup_table, ...
  'channels', [2, 2, 0], 'phase', [], 'format', @uint16, ...
  'mask', [hex2dec('00ff'), hex2dec('ff00')]);














	
resample(lt, nphase)

	Generates a new lookup table re-sampled at the specified phases


	Usage

	nlt = lt.resample(nphase) returns a new lookup table re-sampled
at the specified phases.  Values assigned to new phases correspond
to the nearest values in the old table.



	Parameters

	
	phase (numeric) – new phase values













	
save(lt, filename, varargin)

	Save the lookup table to a human readable file

This is useful if you want to use the lookup table in another
program.  Otherwise, the recommended way to save a lookup
table is by using the matlab save function.


	Usage

	lt.save(filename, …) saves the lookup table to file.



	Parameters

	
	filename (char) – filename to save lookup table too.






	Optional named arguments

	
	header (char)     – header lines describing file contents.
Default is a message about when the file was generated.


	cols (numeric)    – specifies which columns of values
will be written.


	format (enum)     – type type of lookup table to write.
All formats write the phase in the first column.
This argument controls what is placed in additional columns.
Currently supported types are:






	8bit  – write a single column of 8 bit integers


	16bit – write a single column of 16 bit integers


	none  – don’t write any additional column


	multi – write one column for each value channel
















	
sorted(lt)

	Returns a new lookup table sorted by phase


	Usage

	nlt = lt.sorted()










	
valueMinimised(lt, valueRangeSz)

	Arranges lookup table so phase values are ascending but
attempts to minimise change in linear index between steps.


	Usage

	nlt = lt.valueMinimised(valueRangeSz) requires information
about the size of each valueRange dimension (vector).






Todo

document parameters



See also otslm.utils.Showable.valueRangeSize()












imaging

This sub-package contains functions for generating an image of the
intensity at the surface of a phase-only SLM in the far-field of the
SLM.

To demonstrate how these function work, we can use the
TestFarfield and TestSlm classes.
From examples/imaging.m, the following code demonstrates how
we can image the incident illumination on the device.
Fig. 55 shows the incident illumination
and output from the two imaging methods.

% Setup camera and slm objects
slm = otslm.utils.TestSlm();
slm.incident = otslm.simple.gaussian(slm.size, 100);
cam = otslm.utils.TestFarfield(slm);

% Generate 1-D profile
im = otslm.utils.imaging.scan1d(slm, cam, 'stride', 10, 'width', 10);

% Generate 2-D raster scan
im = otslm.utils.imaging.scan2d(slm, cam, ...
    'stride', [50,50], 'width', [50,50]);






[image: example output from imaging functions]
Fig. 55 Example output from imaging functions.
(left) incident illumination.  (middle) 1-D scan.  (right)
2-D raster scan.





	scan1d


	scan2d







scan1d


	
otslm.utils.imaging.scan1d(slm, cam, varargin)

	Scans a bar region across device.

This function scans a vertical stripe across the surface of the SLM with
flat phase. Pixels outside this region are assigned a random phase, a
checkerboard pattern or some other pattern in order to scatter light
away from the zero order. The camera (or a photo-diode) should be placed
in the far-field to capture only light from the flat phase region. This
function generates a 1-D profile of the light on the SLM.


	Usage

	im = scan1d(slm, cam, …) scans a bar region across the device
and returns a array representing the intensities at each location.



	Parameters

	
	slm (Showable) – device to display pattern on.
The slm.showComplex function is used to display the pattern.
The pattern used for pixels outside the main region depends on
the SLM configuration.


	cam (Viewable) – device viewing the display.  This device
could be a single photo-diode or the average intensity from all
pixels on a camera.






	Optional named arguments

	
	width (numeric)     – width of the region to scan across the device


	stride (numeric)    – number of pixels to step


	padding (numeric)   – offset for initial window position


	delay (numeric)     – number of seconds to delay after displaying the
image on the SLM before imaging (default: [], i.e. none)


	angle (numeric)     – direction to scan in (rad)


	angle_deg (numeric) – direction to scan in (deg)


	verbose (logical)   – display additional information about run








See also image2d().








scan2d


	
otslm.utils.imaging.scan2d(slm, cam, varargin)

	Scans a 2-D region region across device.

This function is similar to scan1d() except it scans a rectangular
region in a raster pattern across the surface of the SLM to form a 2-D
image of the intensity.


	Usage

	im = scan2d(slm, cam, …) scans a bar region across the device
and returns a matrix representing the intensities at each location.



	Parameters

	
	slm (Showable) – device to display pattern on.
The slm.showComplex function is used to display the pattern.
The pattern used for pixels outside the main region depends on
the SLM configuration.


	cam (Viewable) – device viewing the display.  This device
could be a single photo-diode or the average intensity from all
pixels on a camera.






	Optional named arguments

	
	width [x,y] (numeric)   – width of the region to scan across the device


	stride [x,y] (numeric)  – number of pixels to step


	padding [x0 x1 y0 y1] (numeric) – offset for initial window position


	delay (numeric)     – number of seconds to delay after displaying the
image on the SLM before imaging (default: [], i.e. none)


	angle (numeric)     – direction to scan in (rad)


	angle_deg (numeric) – direction to scan in (deg)


	verbose (logical)   – display additional information about run








See also image1d().










calibration

This sub-package contains functions for calibrating the device and
generating a lookup-table. Most of these methods assume the SLM and
camera are positioned in one of the configurations shown in
Fig. 56.


[image: slm configurations]
Fig. 56 Two different SLM configurations.
(a) shows a Michelson interferometer setup. The SLM and reference mirror
will typically be tilted slightly relative to each other.
(b) shows a camera imaging the far-field of the device.



The sub-package contains several methods using these configurations.
Some of the methods can be fairly unstable. The most robust methods,
from our experience, are smichelson and step, both are described
below. For information on the other methods, see the file comments and
examples/calibration.m.



	smichelson


	step


	pinholes


	checker


	linear


	michelson







smichelson

This setup requires the device to be imaged using a sloped Michelson
interferometer. The method applies a phase shift to half of the device
and measures the change in fringe position as a function of phase
change. The unchanged half of the device is used as a reference.

The easiest way to use this method is via the
otslm.ui.CalibrationSMichelson
graphical user interface.

The method takes two slices through the output image of the Viewable
object. The slices should be perpendicular to the interference fringes
on the SLM. The step width determines how many pixels to average over.
One slice should be in the unshifted region of the SLM, and the other in
the shifted region of the SLM. The slice offset, angle and width
describe the location of the two slices. The step_angle parameter
sets the direction of the phase step.

In order to understand the function parameters, we recommend using the
otslm.ui.CalibrationSMichelson GUI with
the otslm.ui.TestMichelson GUI.
A possible configuration is shown in Fig. 57.


[image: GUI config for smichelson demo]
Fig. 57 otslm.ui.CalibrationSMichelson and :
otslm.ui.TestMichelson used to demonstrate the
smichelson calibration method.




	
otslm.utils.calibration.smichelson(slm, cam, varargin)

	Uses images from a sloped Michelson interferometer

Calculate the SLM lookup table using interference fringes on a
sloped Michelson interferometer setup.  Either the SLM or reference
beam mirror must be sloped with respect to the illumination causing
interference fringes in the output.  By varying the phase on the
device, the fringes can be made to move.  This can be done on
half the device allowing the other half to be used as a reference.


	Usage

	lt = smichelson(slm, cam, …) calibrate using the smichelson method.



	Parameters

	
	slm (Showable) – device to generate the lookup table for.


	cam (Viewable) – device imaging the slm.  The camera
should be viewing the output of a Michelson interferometer, with
the SLM on one arm and a mirror on the other.  The mirror should
be tilted slightly to create interference fringes on the camera.






	Optional named parameters

	
	slice1_offset   num  – slice 1 distance from image centre


	slice1_width    num  – width of the slice 1 to average over


	slice2_offset   num  – slice 2 distance from image centre


	slice2_width    num  – width of the slice 2 to average over


	slice_angle     num  – angle for the slice (deg)


	freq_index      idx  – index for frequency sample


	step_angle      num  – angle for the step function (deg)


	delay           num  – delay after displaying slm image


	stride          num  – number of linear indexes to step


	basevalue       num  – value to use for the first region


	verbose         bool – display progress in console


	show_progress   bool – show progress figure


	show_camera     bool – show what the camera sees


	show_spectrum   bool – show the 1-D Fourier spectrum of the images















step

This function requires the camera to be in the far-field of the device.
The function applies a step function to the device, causing a
interference line to appear in the far-field. The position of the
interference line changes depending on the relative phase of the two
sides of the step function. An extension to this function is
pinholes() which uses two pinholes instead of a step
function, allowing for more precise calibration.

The easiest way to use this method is via the
CalibrationStepFarfield GUI.
In order to understand the function parameters, we recommend using the
CalibrationStepFarfield GUI with the TestFarfield GUI.
An example configuration is shown in Fig. 58.


[image: GUI config for step demo]
Fig. 58 otslm.ui.CalibrationStepFarfield and :
otslm.ui.TestFarfield used to demonstrate the
step calibration method.




	
otslm.utils.calibration.step(slm, cam, varargin)

	Applies a step function and looks at interference.

This function creates a step phase pattern with two regions.
The far-field interference pattern of these regions contains a
fringe which moves depending on the relative phase between the
two regions.

The function uses a Fourier transform to determine the position of the
interference fringe. The frequency for the Fourier transform is
specified by the freq_index parameter. The width and angle
parameters control the number of pixels to average over and the angle of
the slice.


	Usage

	lt = step(slm, cam, …) calibrates using the step method.



	Parameters

	
	slm (Showable) – device to generate the lookup table for.


	cam (Viewable) – device imaging the slm in the far-field.






	Optional named arguments

	
	slice_offset    num  – slice distance from image centre


	slice_width     num  – width of the slice to average over


	slice_angle     num  – angle for the slice (deg)


	freq_index      idx  – index for frequency sample


	step_angle      num  – angle for the step function (deg)


	delay           num  – delay after displaying slm image


	stride          num  – number of linear indexes to step


	basevalue       num  – value to use for the first region


	verbose         bool – display progress in console


	show_progress   bool – show progress figure


	show_camera     bool – show what the camera sees


	show_spectrum   bool – show the 1-D Fourier spectrum of the images















pinholes


	
otslm.utils.calibration.pinholes(slm, cam, varargin)

	Generates virtual pinholes with different phase.

Similar to step but looks at interference of two regions on
different parts of the device allowing per-pixel or per-region
calibration.


	Usage

	lt = pinholes(slm, cam, …) calibrates using the pinholes method.



	Parameters

	
	slm (Showable) – device to generate the lookup table for.


	cam (Viewable) – device imaging the slm in the far-field.






	Optional named arguments

	
	slice_offset    num  – slice distance from image centre


	slice_width     num  – width of the slice to average over


	slice_angle     num  – angle for the slice (deg)


	freq_index      idx  – index for frequency sample


	delay           num  – delay after displaying slm image


	stride          num  – number of linear indexes to step


	basevalue       num  – value to use for the first region


	radius          num  – radius of pinholes (pixels)


	verbose (logical)       – display progress in console


	show_progress (logical) – show progress figure


	show_camera (logical)   – show what the camera sees


	show_spectrum (logical) – show the 1-D Fourier spectrum of the images















checker


	
otslm.utils.calibration.checker(slm, cam, varargin)

	Generate phase device lookup table using checkerboard pattern.

This method displays a checkerboard pattern on the device and looks
at the intensity of the zero-th order.  This may not be very effective
if the device is not efficient or the device doesn’t cover the full
2*pi phase range.


	Usage

	lt = checker(slm, cam, …)



	Parameters

	
	slm (Showable) – device to generate the lookup table for.


	cam (Viewable) – device imaging the slm in the far-field.






	Optional named arguments

	
	spacing (numeric)       – size of checkerboard grid


	delay (numeric)         – delay after updating slm


	stride (numeric)        – number of linear indexes to step


	verbose (logical)       – display progress in console


	show_progress (logical) – display progress of the method


	show_camera (logical)   – show what the camera sees















linear


	
otslm.utils.calibration.linear(slm, cam, varargin)

	Attempt to optimise diffraction from a linear grating.

This method does not produce a good estimate of the lookup table
but is useful for generating a lookup table to maximise deflection
into a particular direction or region.


Warning

This method is experimental.




	Usage

	lt = linear(slm, cam, …)



	Parameters

	
	slm (Showable) – device to generate the lookup table for.


	cam (Viewable) – device imaging the slm in the far-field.






	Optional named arguments

	
	grating         str  – type of grating to display on the device


	max_iterations  num  – maximum number of iterations to run


	show_progrerss  bool – show progress of the method


	method          str  – method to use for optimisation


	dof             num  – number of degrees of freedom


	spacing         num  – diffraction grating spacing


	initial_cond    str  – initial condition















michelson


	
otslm.utils.calibration.michelson(slm, cam, varargin)

	Uses images from a standard Michelson interferometer

Requires the SLM to be configured in Michelson interferometer
setup where the screen is perpendicular to the incident beam and
so is the reference beam mirror.

This method could be extended to allow calibration of individual
pixels on the device but requires the uniform illumination.


	Usage

	lt = michelson(slm, cam, …) calibrate the slm using the Michelson
interferometer method.



	Parameters

	
	slm (Showable) – device to generate the lookup table for.


	cam (Viewable) – device imaging the slm.  The camera
should be viewing the output of a Michelson interferometer, with
the SLM on one arm and a mirror on the other.






	Optional named arguments

	
	delay (numeric)      – delay after displaying slm image (seconds).


	stride (numeric)     – number of linear indexes to step


	verbose (logical)    – display progress in console

















RedTweezers

The RedTweezers sub-package provides classes for displaying patterns
using OpenGL using the GPU or OpenGL enabled CPU.
The main class is RedTweezers which provides methods for
setting up the connection to the RedTweezers UDP server and sending
OpenGL uniforms, textures and shaders programs to the UDP server.
For these classes to work, you must have a running RedTweezers
UDP server setup on your network.
For example usage, see the Using the GPU example.



	RedTweezers base class


	Showable


	PrismsAndLenses







RedTweezers base class


	
class otslm.utils.RedTweezers.RedTweezers(address, port)

	Interface to RedTweezers.

RedTweezers is a software package which calculates the hologram
using OpenGL and directly displays the hologram on the hardware.
This has the advantage over other methods that it does not require
the pattern to be downloaded from the graphics hardware and
re-uploaded for display on the hardware.

This class connects to RedTweezers via UDP.
The RedTweezers library must be running for this to work.

For details and download link, see the RedTweezers CPC paper:
https://doi.org/10.1016/j.cpc.2013.08.008


	Methods

	
	RedTweezers   – Construct an instance of this object


	sendCommand   – Send a command (adds data block wrapper)


	updateAll     – Resend all commands


	readGlslFile  – Read a GLSL file into a character array






	Properties

	
	udp_port    – port of RedTweezers server


	live_update – True if property changes should be sent to
RedTweeezers immediately, otherwise updateAll can be used
to send properties at a later time.






	RedTweezers properties

	
	vsync (logical) – Synchronise updating with monitor refresh rate


	window (cell|numeric) – Size of the window [x, y, width, height] or
{‘fullscreen’, monitor_id} for fullscreen.  Use resizeWindow
to change the window size.


	network_reply (logical) – If True, requests RedTweezers server
sends a reply.








See also RedTweezers, Showable and PrismsAndLenses.


	
RedTweezers(address, port)

	RedTweezers construct a new RedTweezers interface


	Usage

	rt = RedTweezers([address, port]) specifies a custom address/port.



	Parameters

	
	address – IP address, passed to udp().
(default: ‘127.0.0.1’).


	port    – UDP port to connect to (default: 61556).













	
static readGlslFile(filename)

	Read a GLSL file into a character array


	Usage

	contents = RedTweezers.readGlslFile(filename)
Returns a character vector with file contents.



	Parameters

	
	filename (char) – GLSL file to read













	
sendCommand(rt, cmd)

	Send a command string to the device


	Usage

	rt.sendCommand(cmd) sends the command string to the device and
adds the data block.



	Parameters

	
	cmd (char) – command string to send to device













	
sendShader(rt, shader, send)

	Send a shader to the device


	Usage

	cmd = rt.sendShader(shader, [send])



	Parameters

	
	shader (char)    – shader character vector.


	send (logical)   – If send is false, the command isn’t sent.
(default: nargout == 0)













	
sendTexture(rt, id, texture, varargin)

	Send a texture blob to the device


	Usage

	cmd = sendTexture(id, texture, [send, …])



	Paramters

	
	id – OpenGL uniform id to store texture at


	texture – The texture.  Should be a 4xWxH in RGBA order.
If the texture is a 3xWxH uint8 matrix, the function
adds 255 for the A channel.


	send (logical)   – If send is false, the command isn’t sent.
(default: nargout == 0)






	Optional named arguments

	
	endian (enum) – ‘L’ or ‘B’ endian-ness of byte stream (for float)













	
sendUniform(rt, id, values, send)

	Sends an array of namers to the device and renders the pattern


	Usage

	cmd = rt.sendUniform(id, values, [send]) sends an array of numbers.
The array of numbers will be stored in uniform register id.
The first uniform in the program is id=0.
Array length must be less than 200 elements.
Returns the string for the command.



	Parameters

	
	id (numeric)     – OpenGL register to store values in


	values (numeric) – array of values to send


	send (logical)   – If send is false, the command isn’t sent.
(default: nargout == 0)













	
updateAll(rt, send)

	Resends all information to RedTweezers

Only sends set options (leaves others at RedTweezers defaults)


	Usage

	rt.updateAll([send]) send all commands to the device.

cmd = rt.updateAll([send]) send all commands to the device and
return the string that is sent.



	Parameters

	
	send (logical) – If send is False, don’t actually send the
commands to the device.  (default: nargout == 0)



















Showable


	
class otslm.utils.RedTweezers.Showable(varargin)

	RedTweezers interface for displaying pre-computed patterns.
Inherits from otslm.utils.Showable and RedTweezers.

Loads a shader into RedTweezers for displaying images.
This is roughly equivilant to the ScreenDevice class.


	
Showable(varargin)

	Connects to RedTweezers and loads the Prisms and Lenses shader

rt = RedTweezers(…) connect to a running instance of RedTweezers.
Default address is 127.0.0.1 port 61556.

rt = RedTweezers(address, port, …) specifies a custom address/port.


	Optional named arguments

	
	‘lookup_table’  table  – Lookup table to use for device
Default lookup table is value_range{1} repeated for each channel.


	‘value_range’   table  – Cell array of value ranges
Default is 256x3 for a RGB screen


	‘pattern_type’  str    – Type of pattern the device displays.
Default is ‘amplitude’.  Can also be ‘phase’.


	prescaledPatterns   bool – Default value for prescaled argument
in show.  Default: false.













	
showRaw(rt, img)

	Show the pattern on the device (update the texture)

rt.showRaw() clears the screen.

rt.showRaw(img) display an image on the screen.
The image should have 1 or 3 channels.

Images must be single, double or unit8.  Float images
should be in range [0, 1), uint8 in range [0, 256).












PrismsAndLenses


	
class otslm.utils.RedTweezers.PrismsAndLenses(varargin)

	Prisms and Lenses algorithm for RedTweezers.
Inherits from RedTweezers.

Implements the Prisms and Lenses algorithm in an OpenGl shader.

See also PrismsAndLenses and Showable.


	
PrismsAndLenses(varargin)

	Connects to RedTweezers and loads the Prisms and Lenses shader

rt = RedTweezers() connect to a running instance of RedTweezers.
Default address is 127.0.0.1 port 61556.

rt = RedTweezers(address, port) specifies a custom address/port.






	
addSpot(rt, varargin)

	Add a spot to the pattern

rt.addSpot(position, …) declares a new spot at
the specified position [x, y, z].  Uses PrismsAndLensesSpot
to represent the spot.


	Optional named parameters:

	
	‘oam’    int   – Vortex charge


	‘phase’  float – Phase offset for the spot


	‘intensity’ float – Intensity for the spot


	‘aperture’  [x, y, R] – Position and radius of aperture


	‘line’   [x, y, z, phase] – Direction, length and phase of line













	
removeSpot(rt, index)

	Remove the specified spot from the pattern

rt.removeSpot() removes a spot from the end of the array.

Can also directly modify the Spot array






	
updateAll(rt, send)

	Resends all information to RedTweezers

Only sends set options (leaves others at RedTweezers defaults)
Does not send the shader.

If send is false, the command isn’t sent.  Default value for
send is nargout == 0










PrismsAndLensesSpot


	
class otslm.utils.RedTweezers.PrismsAndLensesSpot(varargin)

	Properties definition for a PrismsAndLenses spot.
This class is for use with PrismsAndLenses.


	Properties

	
	position     – Position of spot [x; y; z]


	oam          – Orbital angular momentum charge number (int)


	phase        – Phase of the spot


	intensity    – Intensity of the spot


	aperture     – Aperture to define hologram within [x; y; radius]


	line         – Line trap direction and phase [x; y; z; phase]









	
PrismsAndLensesSpot(varargin)

	Declares a new spot for PrismsAndLenses

PrismsAndLensesSpot(position, …) declares a new spot at
the specified position [x, y, z].


	Optional named parameters

	
	‘oam’    int   – Vortex charge


	‘phase’  float – Phase offset for the spot


	‘intensity’ float – Intensity for the spot


	‘aperture’  [x, y, R] – Position and radius of aperture


	‘line’   [x, y, z, phase] – Direction, length and phase of line























Base classes of showable and viewable objects

These abstract base classes define the interface expected by the
various imaging, calibration and GUI functions/classes in the toolbox.
You can not directly create instances of these classes, instead
you must implement your own subclass or
use one of the predefined subclasses, see Physical devices
or Non-physical devices.



	Showable


	Viewable







Showable


	
class otslm.utils.Showable(varargin)

	Represents devices that can display a pattern.
Inherits from handle.


	Methods (abstract):

	
	showRaw(pattern)  –  Display the pattern on the device.  The pattern
is raw values from the device valueRange (i.e. colour mapping
should already have been applied).






	Methods:

	
	show(pattern)     –  Display the pattern on the device.  The pattern
type is determined from the patternType property.


	showComplex(pattern) – Display a complex pattern.  The default
behaviour is to call show after converting the pattern
to the patternType of the device.  Conversion is done by calling
otslm.tools.finalize with for amplitude, phase target.


	showIndexed(pattern) – Display a pattern with integers describing
entries in the lookup table.


	view(pattern)        – Calculate the raw pattern.


	viewComplex(pattern) – Calculate the raw pattern from complex


	viewIndexed(pattern) – Calculate the raw pattern from indexed


	valueRangeNumel() –  Total number of values device can display






	Properties (abstract):

	
	valueRange      –  Values that the device patterns can contain.
This should be a 1-d array, or cell array of 1-d arrays for
each dimension of the raw pattern.


	patternType     –  Type of pattern, can be one of:






	‘phase’        –   Real pattern in range [0, 1]


	‘amplitude’    –   Real pattern in range [0, 1]


	‘complex’      –   Complex pattern, abs(value) <= 1








	size            –  Size of the device [rows, columns]


	lookupTable     –  Lookup table for show -> raw mapping








This is the interface that utility functions which request an
image from the experiment/simulation use.  For declaring a new
display device, you should inherit from this class and define
the abstract methods and properties described above.
You can also override the other methods if needed.

See also Showable and otslm.utils.ScreenDevice.


	
Showable(varargin)

	Constructor for Showable objects, provides options for default vals


	Optional named arguments

	
	prescaledPatterns   bool  – Default value for prescaled argument
in show.  Default: false.













	
linearValueRange(varargin)

	Generate an array of all possible device value combinations

linearValueRange(‘structured’, true) generates a table with
as many rows as valueRange has cells.

lienarValueRange() generates a table with a single column.
values in each column of valueRange must be column unique.






	
show(varargin)

	Method to show device type pattern

slm.show(…) with no pattern opens the window with an empty
pattern.

slm.show(pattern, …) displays the pattern after applying the
color map.  For phase based devices, the pattern should not be
scalled by 2*pi (i.e. mod(pattern, 1)*2*pi should give the angle).


	Optional named arguments:

	
	– prescaled  bool – If the pattern is already scalled by 2*pi.

	Default: false.









Additional arguments are passed to showRaw.

See also view, showRaw, showComplex.






	
showComplex(pattern, varargin)

	Default function to display a complex pattern on a device

slm.showComplex(pattern, …)
Additional arguments are passed to showRaw.






	
showIndexed(slm, pattern, varargin)

	Display a pattern described by linear indexes on the device

slm.showIndexed(pattern, …)
Additional arguments are passed to showRaw.






	
valueRangeSize(idx)

	Calculate the size of the lookup table






	
view(slm, pattern)

	Generate the raw pattern that is displayed on the device

im = slm.view(pattern) apply the modulo (if phase device)
and apply the lookup table.  Any nans remaining in the image
are replaced by the first value in the lookup table.






	
viewComplex(slm, pattern)

	Convert the complex pattern to a raw pattern






	
viewIndexed(slm, pattern)

	Convert the indexed pattern to a raw pattern












Viewable


	
class otslm.utils.Viewable

	Abstract representation of objects that can be viewed (cameras).
Inherits from handle.


	Methods (Abstract)

	
	view()        Show an image from the device.






	Methods

	
	viewTarget()  Show an image of the target region from the device.
The default behaviour is just to call view().


	crop(roi)     Create a region of interest that is returned by
viewTarget.  Can have multiple regions.






	Properties (Abstract)

	
	size          Size of the device [rows, columns]


	roisize       Size of the target region [rows, columns]








This is the interface that utility functions which request an
image from the experiment/simulation use.  For declaring a new
camera, you should inherit from this class and define the view method.


	
crop(cam, roi)

	Crop the image to a specified ROI

cam.crop([]) resets the roi to the full screen.

cam.crop(rect) creates a single region of
interest described by the rect [xmin ymin width height].

cam.crop({rect1, rect2, …}) creates multiple regions of
interest described by separate rects.






	
viewTarget(varargin)

	View the target, applies a ROI to the result of view()

im = viewTarget(…) acquire one or more target regions and
return them to an cell array of images.  Specify target
regions using the crop function.  If no output is requested,
the image will be displayed in the current axes.


	Optional named arguments

	
	roi     array     Specified which roi to return








See also otslm.Viewable.crop.














Physical devices

These classes are used to interact with hardware, including cameras,
screens and photo-diodes.



	ScreenDevice


	GigeCamera


	WebcamCamera


	ImaqCamera







ScreenDevice

Represents a device controlled by a window on the screen. Devices
including some digital micro-mirror devices and spatial light modulators
can be connected as additional monitors to the computer and can be
controlled by displaying an image on the screen. This class provides an
interface for controlling a Matlab figure, making sure the window has
the correct size, and ensures the window is positioned above other
windows on the screen.

To use the ScreenDevice class, you need to specify which screen to
place the window on and how large the screen should be.
The ScreenDevice can either occupy the whole screen, for example

slm = otslm.utils.ScreenDevice(2, 'pattern_type', 'phase');





would create a full-screen window on display number 2; or the class
can create a window of a specified size, for example

slm = otslm.utils.ScreenDevice(1, 'pattern_type', 'amplitude', ...
      'size', [512, 512], 'offset', [100, 100]);





creates a 512x512 window positioned 100 pixels from the bottom and
100 pixels from the left of screen 1.
Size must always be positive numbers, while offset can be negative
to indicate a position relative to the right/top of the screen,
for details, see figure Fig. 59.


[image: guide to the size and offset parameters]
Fig. 59 Position and size of the screen device and display showing how they
relate to the ScreenDevice offset and size input
parameters.  (left) a ScreenDevice positioned relative to
the bottom left corner, offset is positive.  (right) a
ScreenDevice positioned relative to the top right
corner, offset is negative.



The pattern_type argument specifies if the input pattern to the
show methods should be a phase, amplitude or complex amplitude
pattern. To create a window that is not full-screen, we can simply pass
false as the full-screen argument and set the corresponding target
window size and position offset.

To display a pattern on the device for 10 seconds, we can use

pattern = otslm.simple.linear(slm.size, 50);
slm.show(pattern);
pause(10);
slm.close();





This configuration assumes the pattern has not yet been passed to the
finalize function (i.e. for a linear grating with a spacing of 50
pixels, the pattern should be in the range 0 to 1 and not 0 to 2pi). If
you are using pre-scaled patterns (in the range 0 to 2pi), you can set
the prescaledPatterns optional parameter in the constructor for the
ScreenDevice to true:

slm = otslm.utils.ScreenDevice(scid, 'pattern_type', 'phase', ...
  'prescaledPatterns', true);





To display a sequence of frames on the device, you can use multiple
calls to ScreenDevice.show(). This will apply the colour-map during
the animation, which can be time consuming and reduce the frame rate. An
alternative is to pre-calculate the animation frames. To do this, we
generate a struct which can be passed to the movie function:

% Generate images first
patterns = struct('cdata', {}, 'colormap', {});
for ii = 1:100
  patterns(ii) = im2frame(otslm.tools.finalize(otslm.simple.linear(slm.size, ii), ...
      'colormap', slm.lookupTable));
end

% Then display the animation
slm.showRaw(patterns, 'framerate', 100);
slm.close();





Showable classes have multiple methods for showing patterns on the
device. The showRaw method takes patterns that are already in the
range of values suitable for the device. The show function converts
the specified pattern into the device value range (by applying, for
example, a colour-map or modulo to the pattern). The type of input to
the show function should match the patternType property, for
ScreenDevice objects, patternType is set from the
pattern_type parameter in the constructor. If patternType is
amplitude, the input to show is assumed to be a real amplitude pattern,
if patternType is phase, the input is assumed to be a phase pattern.
The showComplex function uses otslm.tools.finalize() to convert
the complex amplitude to a phase or amplitude pattern (depending on the
value for patternType), before calling show to display the
pattern on the device. Further details can be found in the documentation
for the Showable base class.

To setup the lookup table which is applied by show, we can load a
lookup table from a file and pass it in on construction. If you don’t
yet have a lookup table, you can use one of the calibration functions,
see calibration. As an example, to load a lookup
table specified by a filename fname we could use the following:

lookup_table = otslm.utils.LookupTable.load(fname, ...
  'channels', [2, 2, 0], 'phase', [], 'format', @uint16, ...
  'mask', [hex2dec('00ff'), hex2dec('ff00')], 'morder',  1:8);





This assumes the file has 2 columns, we ignore the first and split the
second into the lower 8 bits and upper 8 bits. The lookup table has 3
channels, the first two channels have values from the second column in
the file, the third channel is all zeros. The format for the input is
uint16, we apply a mask to this input for each column and we
specify the order of the bits from least significant to most significant
(morder). The phase isn’t specified in this lookup table, so we
assume it is linear from 0 to 2pi. For further details, see
LookupTable.

To use this lookup table for the ScreenDevice, we simply pass it
into the constructor:

slm = otslm.utils.ScreenDevice(1, ...
    'lookup_table', lookup_table, ...
    'pattern_type', 'phase');






	
class otslm.utils.ScreenDevice(varargin)

	Represents a device controlled by a window on the screen
Inherits from Showable.

Useful for displaying images on SLMs and DMDs connected as a screen
on the computer running Matlab.

The actual target device size may be smaller than the size
reported by the device.

See also ScreenDevice, show, otslm.utils.Showable.


	
ScreenDevice(varargin)

	ScreenDevice Construct a new instance of the screen device.

screen = ScreenDeivce(device_number, …) creates a new
screen device for the specified physical device.  Patterns
are assumed to be amplitude based, value range is RGB.


	Optional named parameters:

	
	‘size’   [r,c]  – Size of the device within the window
Default: [], (i.e. slm.device_size)


	‘offset’ [r,c]  – Offset within the window.  Negative
values are offset from the top of the screen.
Default: [0, 0]


	‘lookup_table’  table  – Lookup table to use for device
Default lookup table is value_range{1} repeated for each channel.


	‘value_range’   table  – Cell array of value ranges
Default is 256x3 for a RGB screen


	‘pattern_type’  type   – Type of pattern the device displays.
Default is amplitude.


	‘fullscreen’    bool   – Default value for showRaw/fullscreen


	‘prescaledPatterns’  bool  If the pattern is already pre-scaled.













	
close()

	Close the window used to control the device






	
showRaw(varargin)

	Show the window and (optionally) display an image

showRaw() display a blank screen.

showRaw(img) display an image on the screen.
The image should have 1 or 3 channels.

showRaw(frames) displays frames using the movie command.
frames should be an array of frames generated by im2frame.
showRaw(frame, ‘framerate’, rate) specifies the frame rate.
showRaw(frame, ‘play’, times) specifies time to play (see movie).












GigeCamera

Showable wrapper for cameras using the gigecam interface. This
class uses the snapshot function to get an image from the device.
The gigecam device is stored in the device property of the
class.


	
class otslm.utils.GigeCamera(varargin)

	Connect to a gige camera connected to the computer
Inherits from Viewable.


	Properties

	
	device   – gige camera object


	size     – size of the camera output image


	Exposure – camera exposure setting








See also GigeCamera


	
GigeCamera(varargin)

	Connect to the camera

cam = GigeCamera(device_id)
connects to the specified GIGE camera.
device_id is passed to the gigecam function.












WebcamCamera

Showable wrapper for windows web-cameras. Uses the
videoinput('winvideo', ...) function to connect to the device. This
class uses the getsnapshot function to get an image from the device.
The videoinput device is stored in the device property of the
class.


Note

This class currently doesn’t inherit from ImaqCamera
but is likely to in a future release of OTSLM.




	
class otslm.utils.WebcamCamera(varargin)

	Connect to a webcam camera connected to the computer.
Inherits from Viewable.


	Properties

	
	size – resolution of the device


	device – videoinput device for the camera








This call can be used to create a otslm.utils.Viewable instance for
a videoinput source.  This requires the Image Acquisition Toolbox.

See also WebcamCamera, GigeCamera and ImaqCamera.


	
WebcamCamera(varargin)

	Connect to the camera

cam = WebcamCamera(device_id) connect to the specified
webcam camera.  For the device id, imaqhwinfo.

If the device you are interested in is not listed, try
resetting/clearing all devices with imaqreset.












ImaqCamera

Showable wrapper for image acquisition toolbox cameras. Uses the
videoinput(...) function to connect to the device. This class uses
the getsnapshot function to get an image from the device. The
videoinput device is stored in the device property of the class.


	
class otslm.utils.ImaqCamera(varargin)

	Connect to a image acquisition toolbox (imaq) camera
Inherits from Viewable

This call can be used to create a otslm.utils.Viewable instance for
a videoinput source.  This requires the Image Acquisition Toolbox.


	Properties

	
	device – imaq object for the camera








See also ImaqCamera.


	
ImaqCamera(varargin)

	Connect to the camera

cam = ImaqCamera(adaptor, id, …) conntect to the specified
webcam camera.  For the device id, imaqhwinfo.

For cameras that support multiple formats, a ‘format’ named
argument can be supplied with the format to use.














Non-physical devices

The utils package defines several non-physical devices which can be
used to test calibration or imaging algorithms.
The TestDmd and TestSlm classes are
Showable devices which can be combined with the
TestFarfield or
TestMichelson Viewable devices. These Showable
devices implement the same functions as their physical counter-parts,
except they store their output to a pattern property. The
Viewable devices require a valid TestShowable
instance and implement a view
function which retrieves the pattern property from the
Showable and simulates the expected output.

For example usage, see the examples in the imaging section.



	TestDmd


	TestSlm


	TestFarfield


	TestMichelson


	TestShowable







TestDmd


	
class otslm.utils.TestDmd(varargin)

	Non-physical dmd-like device for testing code.
Inherits from TestShowable.

This class can be used as a non-physical Showable device in
simulating a binary amplitude device, such as a digital
micro-mirror device.

When showRaw is called, the function calculates the pattern by
applying rpack using the otslm.tools.finalize()
method and sets the pattern property with the computed pattern. The
incident illumination is added to the output. To change the incident
illumination, either set a different pattern on construction or change
the property value.


	Properties

	
	incident (complex) – incident illumination profile.
Must be the same size as the device.


	pattern (comples)  – pattern generated by the showRaw method.
This pattern is is the complex amplitude after multiplying by the
incident illumination and applying rpack. The rpack operation
means that this pattern is larger than the device, with extra padding
added to the corners.






	Constant properties

	
	size (size) – device resolution (pixels) [rows, columns]


	valueRange  – range of raw device values (fixed: {[0, 1]})


	patternType – type of pattern for device (fixed: 'amplitude')


	lookupTable – mapping between gray-scale and binary values. (fixed)








See also TestDmd, TestSlm and TestFarfield.


	
TestDmd(varargin)

	Create a new virtual DMD object for testing


	Usage

	slm = TestDmd(…) create a virtual binary amplitude device.



	Optional named arguments

	
	size      [row, col] – Size of the device (default: [512,512])


	incident      im     – Incident illumination (default: [])



















TestSlm


	
class otslm.utils.TestSlm(varargin)

	Non-physical slm-like device for testing code.
Inherits from TestShowable.

The showRaw function applies the inverse of the lookup table,
converts from phase to a complex amplitude and assigns the result to the
pattern property.


	Properties

	
	pattern (complex)  – pattern generated by the showRaw method.
This pattern is the complex amplitude after multiplying by
the incident illumination and is the same size as the device.


	incident (complex) – incident illumination.






	Constant properties

	
	size (size) – device resolution in pixels [rows, columns]


	valueRange  – range of raw device values (default: {0:255})


	patternType – type of pattern for device (fixed: 'phase')


	lookupTable – Lookup table for the device.  Defaults to a linear
mapping of 0 to 2pi to the discrete colour levels of the device.








See also TestSlm, TestDmd and TestFarfield.


	
TestSlm(varargin)

	Create a new virtual SLM object for testing


	Usage

	slm = TestSlm(…) creates a device with a linear phase lookup
table from 0 to 2*pi.



	Optional named arguments

	
	size (size)          – size of the device ([rows, cols]).


	incident  (complex)  – incident illumination


	lookup_table         – lookup table for colormap


	value_range  (cell)  – cell array with channel values for raw
pattern.  Default: {0:255}.  Use {0:255, 0:255, 0:255}
for three channel device with 256 levels on each channel.



















TestFarfield


	
class otslm.utils.TestFarfield(varargin)

	Non-physical camera for viewing TestShowable objects
Inherits from Viewable.

Calculates the paraxial far-field of the TestShowable object.
The view method calls otslm.tools.visualise() and calculates the
intensity of the resulting image (abs(U)^2).


Note

This class may change in future versions to use
a propagator instead of otslm.tools.visualise().




	Properties

	
	size      – size of the output image


	showable  – the Showable object that this class is linked to


	NA        – numerical aperture of the lens
(passed to otslm.tools.visualise()).


	offset    – offset from the focal plane of the lens
(passed to otslm.tools.visualise()).






	Inherited properties

	
	roisize   – (Viewable) size of the regions of interest


	roioffset – (Viewable) offsets for the regions of interest


	numroi    – (Viewable) number of regions of interest








See also TestFarfield, TestMichelson, TestSlm.


	
TestFarfield(varargin)

	Construct a new TestFarfield looking at a TestShowable object


	Usage

	obj = TestFarfield(showable, …)



	Parameters

	
	showable (TestShowable) – linked showable device.






	Optional named arguments

	
	NA (numeric)     – Numerical aperture of lens (default: 1.0)


	offset (numeric) – Offset from focal plane of lens (default: 0.0)



















TestMichelson


	
class otslm.utils.TestMichelson(showable, varargin)

	Non-physical representation of Michelson interferometer.
Inherits from Viewable.

The interferometer consists of two arms, a reference arm with a mirror
and a device arm with a Showable device such as a SLM or DMD
The TestMichelson simulates a TestShowable device placed
in one arm, and calculates the interference pattern between the
reference arm and the test arm.

The view function gets the current pattern from the
TestShowable device and calculates the interference.
The device supports adding a tilt between the reference arm and the
Showable arm.  This can be useful for
testing calibration.smichelson().


	Properties

	
	tilt     – Angle to tilt the showable device with respect to the
reference beam.  Applies a exp(2*pi*i*linear*tilt) grating.






	Properties (read-only)

	
	size     – Size of the output image (same as Showable)


	showable – The TestShowable device








See also TestMichelson, TestShowable and TestFarfield.


	
TestMichelson(showable, varargin)

	Create the new interferometer-like device


	Usage

	obj = TestMichelson(showable, …) construct a new Michelson
interferometer to view the TestShowable device.



	Parameters

	
	showable (TestShowable) – the device to link






	Optional named arguments

	
	tilt (numeric) – tilt factor (default: 0.0)



















TestShowable


	
class otslm.utils.TestShowable

	Non-physical showable device for testing implementation.
Inherits from Showable.

This is an abstract class defining a single abstract property,
pattern, containing the pattern currently displayed on the device.
For implementations see TestDmd and TestSlm.


	Properties (Abstract)

	
	pattern – complex valued pattern currently displayed on the device.








See also Showable, TestSlm and TestCamera.













          

      

      

    

  

    
      
          
            
  
ui Package

The UI sub-package contains graphical user interfaces for exploring the
toolbox functionality. The sub-package contains the Launcher
GUI which provides a list of
components and a brief description of their function. The rest of the
sub-package is split between simple, utils, tools, iter,
and examples sub-packages providing interfaces to the OTSLM core
packages and examples of how the UI can be combined. The UI sub-package
also contains a otslm.ui.support sub-package with
common code used by the GUIs.

This section provides information required to extend the Launcher,
or other GUI windows as well as a
brief overview of the other GUI components.
For details on the functions the GUIs represent, see the corresponding
package documentation: iter Package, tools Package,
simple Package or utils Package.
For details on how to use the GUIs, see Getting Started
and Examples.


Contents


	Launcher


	Simple GUI overview


	Support sub-package







Launcher


	
otslm.ui.Launcher

	



The launcher consists of two layers: the category list and the
application list. The application list is populated when the user
selects a category. Details about the programs are specified in the
CategoryListBoxValueChanged function and *Data functions.


Specifying application names

Application names are specified in the CategoryListBoxValueChanged
function. To add a new application, extend the ItemsData and
Items fields of the ApplicationListBox for the category you wish
to place the app in. The ItemsData field is used in the *Data
function (see below) to get the application name and description.




Program name, description and launch command

Information about each of the programs is defined in the *Data
functions, one function for each sub-package: ExampleData,
IterativeData, ToolsData, UtilitiesData and SimpleData.

These functions return a struct with the fields Name,
Description and AppName for the user-readable name, description
and the Matlab application name to launch. The value returned depends on
the current value for the ApplicationListBox list box. In order to
extend the applications list, simply add a new case to the switch for
the new application and set the corresponding values in the data
struct, for example:

data.Name = 'Mixing Two Beams';
data.Description = ['This example shows how to generate a phase only diffraction ' ...
    'grating to split a beam into two independently controllable spots.'];
data.AppName = 'otslm.ui.examples.MixingTwoBeams';










Simple GUI overview

Most GUIs are split into 4 main sections, shown in
Fig. 60


[image: overview of ui.simple.linear]
Fig. 60 Overview of ui.simple.linear graphical user interface.
The layout consists of:
(1) Output variable name;
(2) Size of pattern (mostly used on ui.simple.* GUIs);
(3) Controls for the method; and
(4) Pattern preview window.



When the window launches it will search the base workspace for variables
names and otslm.utils.Showable devices which can be used for
displaying the pattern (see otslm.ui.support.populateDeviceList()).

Methods which updated as soon as the user changes a value will have most
of the implementation contained in a callback function. For
ui.simple.linear, this is done in
otslm.ui.support.patternValueChanged().
The content of this function involves first getting the inputs
from the user and converting the strings to variables:

% Get the UI fileds for generating the pattern
name = app.NameEditField.Value;
sz = evalin('base', ['[', app.SizeEditField.Value, ']']);
spacing = app.SpacingSpinner.Value;
angle_deg = app.AngledegSpinner.Value;
offset = app.OffsetSpinner.Value;
centre = evalin('base', ['[', app.CentreEditField.Value, ']']);





The function then calls the OTSLM method:

% Generate the pattern
pattern = otslm.simple.linear(sz, spacing, ...
    'centre', centre, 'angle_deg', angle_deg);
pattern = pattern + offset;





And finally, calls the
otslm.ui.support.simplePatternValueChanged() helper
handle updating the preview window, saving the result to
the workspace and updating the device.

% Offload to the base class (sort of...)
otslm.ui.support.simplePatternValueChanged(name, pattern, ...
    app.DeviceDropDown.Value, app.UpdateDeviceCheckBox.Value, ...
    app.EnableDisplayCheckBox.Value, app.UIAxes, ...
    app.DisplayDropDown.Value, app.DisplayVariableEditField.Value);





Most functions will have a public updateView function which can be
used by other GUI windows to force an update to window after values have
changed.




Support sub-package

The support sub-package contains common code and functions used by the
GUI components. These support functions can be used to design additional
user interfaces using the toolbox. This section briefly describes these
functions and how they are used by the existing GUI components.


Warning

Some of these functions should really be part of a custom GUI component
layout class. To the best of our knowledge, this is currently not
supported for Matlab Apps in R2018a. If this changes in a future Matlab
release, much of this code will likely move/change.




Contents


	calculateImageSliceFreq


	checkImagesChanged


	cleanTimer


	complexPatternValueChanged


	findTabUserdata


	getDeviceFromBase


	getImageOrNone


	iterPatternValueChanged


	populateDeviceList


	saveVariableToBase


	simplePatternValueChanged


	updateComplexDisplay


	updateIterDisplay


	updateSimpleDisplay







calculateImageSliceFreq


	
otslm.ui.support.calculateImageSliceFreq(img, theta, offset, swidth)

	Calculate the frequency spectrum of an image slice


	Usage

	[fvals, freqs] = calculateImageSliceFreq(img, theta, offset, swidth)
calculates the frequency spectrum of a slice through an image.



	Parameters

	
	img     – Real valued image to calculate spectrum from


	theta   – Angle of slice (radians)


	offset  – Offset of slice (pixels)


	swidth  – width of slice (pixels) to average over






	Returns

	
	fvals   – Calculated amplitudes


	freqs   – Corresponding frequencies








This function is used for the power spectrum plots in the calibration
functions. The function samples a slice of pixels from an image.
Arguments control the slice position, width and angle. The function
returns the spatial frequencies and complex amplitudes. For example
usage, see ui.utils.CalibrationStepFarfield.








checkImagesChanged


	
otslm.ui.support.checkImagesChanged(oldImages, newImages)

	Compare two cell arrays of images for changes


	Usage

	changed = checkImagesChanged(oldImage, newImages) compares each
image in the two cell arrays for differences.  If the cell arrays
are different, returns true.



	Parameters

	
	oldImages – first cell array of images to compare


	newImages – second cell array of images to compare






	Returns

	
	changed (logical) – if the images have changed








This function is used by most methods which have an input image,
including ui.tools.Visualise, ui.tools.Finalize and
ui.tools.Dither. The two inputs contain cell arrays of matrices
to be compared. If either the length of the cell arrays, size or type of
the images, or the image data are different, the function returns true.
This can be a expensive comparison. We look for changes between the old
and new images rather than watching for a change event on variables,
this is to allow the user to enter constants or procedural functions
into the GUI inputs.








cleanTimer


	
otslm.ui.support.cleanTimer(tmr)

	Cleans up the timer when the app is about to finish


	Usage

	cleanTimer(tmr) attempts to delete the specified timer.



	Parameters

	
	tmr – The matlab timer to clean up








This function shouldn’t intentionally raise any warnings.

Function attempts to stop and delete the given timer. The function
avoids raising errors, making it safe to use in a GUI clean-up method.
Timers are mainly used to watch for changes to input variables, such as
image inputs to ui.tools.Visualise,
ui.tools.Finalize and ui.tools.Dither.








complexPatternValueChanged


	
otslm.ui.support.complexPatternValueChanged(name, phase, amplitude, ptype, device_name, enable_update, enable_display, display_ax, display_type, display_name)

	Common code for simple update uis with ptype


	Usage

	complexPatternValueChanged(name, phase, amplitude, ptype,
device_name, enable_update, enable_display,
display_ax, display_type, display_name)



	Parameters

	
	name – Variable name to save pattern in base workspace.


	phase – Phase part of pattern.


	amplitude – Amplitude part of pattern


	ptype – type of pattern.  Must be ‘phase’, ‘amplitude’ or ‘complex’.


	device_name – Name of Showable device to display pattern on


	enable_update – If showable device should be updated


	enable_display – If preview should be displayed


	display_ax – Axis for preview


	display_type – Type argument for display,
see updateComplexDisplay() for options.


	display_name – Output variable name for preview data








This should realy be part of the base class, but we don’t seem
to be able to package apps with a custom base class.  Maybe in
future MATLAB versions this might be possible.

As per simplePatternValueChanged()
but with complex patterns and an additional ptype argument.

See also iterPatternValueChanged() and updateComplexDisplay().








findTabUserdata


	
otslm.ui.support.findTabUserdata(tab, tag)

	Find entries with the specific user-data tag and returns a struct


	Usage

	userdata = findTabUserdata(tab, tag)



	Parameters

	
	tab – An object which can be passed to findall


	tag – Cell array of values for UserData property to search for






	Returns

	struct with fields corresponding to tag values





This function uses findall to search the given Tab for entries
whose UserData attribute is set to one of the specified strings.
tag should be a cell array of character vectors for the tags
to search for. Example usage (based on ui.tools.SampleRegion):








getDeviceFromBase


	
otslm.ui.support.getDeviceFromBase(sname)

	Get an showable object from the base workspace


	Usage

	slm = getDeviceFromBase(sname)



	Parameters

	
	sname – string for device variable name in base workspace






	Returns

	Returns the Showable device or an empty list.





This function attempts to get the variable specified by sname from
the base workspace. If sname is empty, the function returns an empty
matrix. If sname is not a variable name, the function raises a
warning. Otherwise, the function gets the variable and checks to see if
it is valid using isvalid. For example usage see
simplePatternValueChanged().








getImageOrNone


	
otslm.ui.support.getImageOrNone(name, silent)

	Get the image from the base workspace or an empty array


	Usage

	im = getImageOrNone(name) gets the variable name from base or None
if any error occurs.

im = getImageOrNone(name, silent) as above but if silent=true
does not retrow the error to the console, just silently ignores it.



	Parameters

	
	name – variable name for image in base workspace


	silent (logical) – True if the method should not print warnings








Attempts to evaluate the given string in the base workspace
with evalin. The string can either be a variable name or valid
matlab code which can be evaluated in the users base workspace.

If an error occurs, the function prints the error to the console
and returns a empty matrix. If the silent argument is set to true,
the function does not print to the console (useful for methods
which frequently check for the existence of
a variable, such as checkImagesChanged().
For example usage, see ui.tools.Visualise,
ui.tools.finalize and ui.tools.dither.








iterPatternValueChanged


	
otslm.ui.support.iterPatternValueChanged(name, pattern, device_name, enable_update, enable_display, display_ax, display_type, display_name, fitness_method)

	Common code for iter update uis


	Usage

	iterPatternValueChanged(name, pattern, …
device_name, enable_update, enable_display, …
display_ax, display_type, display_name, fitness_method)



	Parameters

	
	name – Variable name to save pattern in base workspace.


	pattern – Pattern to display/preview


	device_name – Name of Showable device to display pattern on


	enable_update – If showable device should be updated


	enable_display – If preview should be displayed


	display_ax – Axis for preview


	display_type – Type argument for display,
see updateIterDisplay() for options.


	display_name – Output variable name for preview data


	fitness_method – Function handle for fitness graph








This should realy be part of the base class, but we don’t seem
to be able to package apps with a custom base class.  Maybe in
future MATLAB versions this might be possible.

Function is similar to simplePatternValueChanged() but with
a function handle for plotting fitness scores.

See also See also complexPatternValueChanged() and
updateIterDisplay().








populateDeviceList


	
otslm.ui.support.populateDeviceList(list, type_name)

	Populates the device list with Showable devices


	Usage

	populateDeviceList(list) populates the device drop down list
with the otslm.utils.Showable devices in the base workspace.

populateDeviceList(list, type_name) specify types of devices
to populate list with.



	Parameters

	
	list (uidropdown) – List handle to add items to


	type_name – Name of type to filter variables
by (optional, default: otslm.utils.Showable)








This function is used to populate the contents of a uidropdown
widget. The function takes a handle to the uidropdown widget, an
optional Matlab class name and searches the base workspace for variables
with the specified type. If no class name is specified, the method
populates the list with Showable object names. For example usage,
see ui.simple.linear.








saveVariableToBase


	
otslm.ui.support.saveVariableToBase(name, pattern, warn_prefix)

	Saves the variables to the base workspace


	Usage

	saveVariableToBase(name, pattern, warn_prefix)
Saves the variable pattern to the base workspace with variable name
name.  If name is invalid, prefixes warning with warn_prefix.



	Parameters

	
	name – variable name to save pattern to


	pattern – pattern to be saved


	warn_prefix – prefix to add to warnings








If the name is empty, aborts the operation.
If the names is an invalid variable name, raises a warning.

This function is used by most GUIs for saving computed patterns
into the base workspace, for example usage see
simplePatternValueChanged().








simplePatternValueChanged


	
otslm.ui.support.simplePatternValueChanged(name, pattern, device_name, enable_update, enable_display, display_ax, display_type, display_name)

	Common code for simple update uis


	Usage

	simplePatternValueChanged(name, pattern, …
device_name, enable_update, enable_display, …
display_ax, display_type, display_name)



	Parameters

	
	name – Variable name to save pattern in base workspace.


	pattern – Pattern to save/preview/display


	device_name – Name of Showable device to display pattern on


	enable_update – If showable device should be updated


	enable_display – If preview should be displayed


	display_ax – Axis for preview


	display_type – Type argument for display,
see updateSimpleDisplay() for options.


	display_name – Output variable name for preview data








This should realy be part of the base class, but we don’t seem
to be able to package apps with a custom base class.  Maybe in
future MATLAB versions this might be possible.

This function is used by most of the simple GUIs including
ui.simple.linear, ui.simple.random, and ui.tools.combine.
The function takes as input values from the various GUI components as
well as the generated pattern. The function saves the pattern to the
workspace, displays the pattern on the device, and updates the pattern
preview (if the appropriate values are set).

See also iterPatternValueChanged() and
complexPatternValueChanged().








updateComplexDisplay


	
otslm.ui.support.updateComplexDisplay(pattern, slm, ptype, display_type, ax, output_name)

	Helper for the display on simple uis with ptype


	Usage

	updateComplexDisplay(pattern, slm, ptype, display_type, ax, output_name)
Generates the display pattern, updates the axis and outputs to base.



	Parameters

	
	pattern – pattern to be displayed


	slm – showable device displaying pattern (or [])


	ptype – type of pattern.  Must be ‘phase’, ‘amplitude’ or ‘complex’.


	display_type – mode for the preview window.
can be ‘phase’, ‘raw’, ‘device’, or ‘farfield’.


	ax – axis to place the preview in


	output_name – output variable name in base workspace (or [])








As per updateSimpleDisplay() but with complex patterns and
an additional ptype argument.

See also updateIterDisplay() and
complexPatternValueChanged()








updateIterDisplay


	
otslm.ui.support.updateIterDisplay(pattern, slm, display_type, ax, output_name, fitness_method)

	Helper for updating the display on iterative uis.


	Usage

	updateIterDisplay(pattern, slm, display_type, ax, output_name,
fitness_method) generates the display pattern, updates the
axis and outputs to base.



	Parameters

	
	pattern – pattern to be displayed


	slm – showable device displaying pattern (or [])


	display_type – mode for the preview window.
can be ‘phase’, ‘error’, ‘device’, or ‘farfield’


	ax – axis to place the preview in


	output_name – output variable name in base workspace (or [])


	fitness_method – function to plot fitness








Similar to updateSimpleDisplay() but displays either the
phase pattern, error function, simulated far-field or device
pattern in the preview window.

This function generates the pattern to display in the preview axis.
If output_name is not empty, the function also writes the
pattern to the specified variable name.

See also updateComplexDisplay() and iterPatternValueChanged().








updateSimpleDisplay


	
otslm.ui.support.updateSimpleDisplay(pattern, slm, display_type, ax, output_name)

	Helper for updating the display on simple uis.


	Usage

	updateSimpleDisplay(pattern, slm, display_type, ax, output_name)
Generates the display pattern, updates the axis and outputs to the
base workspace.



	Parameters

	
	pattern – pattern to be displayed


	slm – showable device displaying pattern (or [])


	display_type – mode for the preview window.
can be ‘Phase mask’, ‘Raw phase mask’, ‘Device image’,
or ‘Simulated farfield’


	ax – axis to place the preview in


	output_name – output variable name in base workspace (or [])








This function generates the pattern to display in the preview axis.
If output_name is not empty, the function also writes the
pattern to the specified variable name.

This function is used by most of the simple GUIs including
ui.simple.linear, ui.simple.random, and
ui.tools.combine. For example usage,
see simplePatternValueChanged().

See also updateComplexDisplay() and updateIterDisplay().













          

      

      

    

  

    
      
          
            
  
Documentation terms of use

This documentation is released under the Creative Commons
Attribution-NonCommercial 4.0 International Public License, available
at:

https://creativecommons.org/licenses/by-nc/4.0/legalcode





          

      

      

    

  

    
      
          
            

   MATLAB Module Index


   
   o
   


   
     		 	

     		
       o	

     
       	[image: -]
       	
       +otslm	
       

     
       	
       	   
       otslm.iter	
       

     
       	
       	   
       otslm.iter.objectives	
       

     
       	
       	   
       otslm.simple	
       

     
       	
       	   
       otslm.tools	
       

     
       	
       	   
       otslm.tools.prop	
       

     
       	
       	   
       otslm.ui.support	
       

     
       	
       	   
       otslm.utils	
       

     
       	
       	   
       otslm.utils.calibration	
       

     
       	
       	   
       otslm.utils.imaging	
       

     
       	
       	   
       otslm.utils.RedTweezers	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z
 


A


  	
      	aberrationRiMismatch() (in module otslm.simple)


      	addSpot() (otslm.utils.RedTweezers.PrismsAndLenses method)


      	aperture() (in module otslm.simple)


  

  	
      	aperture3d() (in module otslm.simple)


      	aspheric() (in module otslm.simple)


      	axicon() (in module otslm.simple)


  





B


  	
      	bessel() (in module otslm.simple)


      	Bowman2017 (class in otslm.iter.objectives)


      	bowman2017() (in module otslm.iter)


  

  	
      	Bowman2017() (otslm.iter.objectives.Bowman2017 method)


      	bsc() (in module otslm.iter)


      	bsc2hologram() (in module otslm.tools)


  





C


  	
      	calculateImageSliceFreq() (in module otslm.ui.support)


      	calculateLens() (otslm.tools.prop.FftDebyeForward static method)


      	castValue() (in module otslm.tools)


      	checker() (in module otslm.utils.calibration)


      	checkerboard() (in module otslm.simple)


      	checkImagesChanged() (in module otslm.ui.support)


      	cleanTimer() (in module otslm.ui.support)


  

  	
      	close() (otslm.utils.ScreenDevice method)


      	colormap() (in module otslm.tools)


      	combine() (in module otslm.tools)


      	CombineGerchbergSaxton (class in otslm.iter)


      	CombineGerchbergSaxton() (otslm.iter.CombineGerchbergSaxton method)


      	complexPatternValueChanged() (in module otslm.ui.support)


      	crop() (otslm.utils.Viewable method)


      	cubic() (in module otslm.simple)


  





D


  	
      	DirectSearch (class in otslm.iter)


  

  	
      	DirectSearch() (otslm.iter.DirectSearch method)


      	dither() (in module otslm.tools)


  





E


  	
      	encode1d() (in module otslm.tools)


  

  	
      	evaluate() (otslm.iter.objectives.Objective method)


      	evaluateFitness() (otslm.iter.IterBase method)


  





F


  	
      	Fft3Forward (class in otslm.tools.prop)


      	Fft3Forward() (otslm.tools.prop.Fft3Forward method)


      	Fft3Inverse (class in otslm.tools.prop)


      	Fft3Inverse() (otslm.tools.prop.Fft3Inverse method)


      	FftDebyeForward (class in otslm.tools.prop)


      	FftDebyeForward() (otslm.tools.prop.FftDebyeForward method)


      	FftEwaldForward (class in otslm.tools.prop)


      	FftEwaldForward() (otslm.tools.prop.FftEwaldForward method)


      	FftEwaldInverse (class in otslm.tools.prop)


      	FftEwaldInverse() (otslm.tools.prop.FftEwaldInverse method)


  

  	
      	FftForward (class in otslm.tools.prop)


      	FftForward() (otslm.tools.prop.FftForward method)


      	FftInverse (class in otslm.tools.prop)


      	FftInverse() (otslm.tools.prop.FftInverse method)


      	finalize() (in module otslm.tools)


      	findTabUserdata() (in module otslm.ui.support)


      	FlatIntensity (class in otslm.iter.objectives)


      	FlatIntensity() (otslm.iter.objectives.FlatIntensity method)


      	Flatness (class in otslm.iter.objectives)


      	Flatness() (otslm.iter.objectives.Flatness method)


  





G


  	
      	gaussian() (in module otslm.simple)


      	gaussian3d() (in module otslm.simple)


      	GerchbergSaxton (class in otslm.iter)


      	GerchbergSaxton() (otslm.iter.GerchbergSaxton method)


      	GerchbergSaxton3d (class in otslm.iter)


      	GerchbergSaxton3d() (otslm.iter.GerchbergSaxton3d method)


      	getDeviceFromBase() (in module otslm.ui.support)


  

  	
      	getImageOrNone() (in module otslm.ui.support)


      	GigeCamera (class in otslm.utils)


      	GigeCamera() (otslm.utils.GigeCamera method)


      	Goorden2014 (class in otslm.iter.objectives)


      	Goorden2014() (otslm.iter.objectives.Goorden2014 method)


      	grid() (in module otslm.simple)


      	grid3d() (in module otslm.simple)


  





H


  	
      	hgmode() (in module otslm.simple)


  

  	
      	hologram2bsc() (in module otslm.tools)


      	hologram2volume() (in module otslm.tools)


  





I


  	
      	igmode() (in module otslm.simple)


      	ImaqCamera (class in otslm.utils)


      	ImaqCamera() (otslm.utils.ImaqCamera method)


      	Intensity (class in otslm.iter.objectives)


      	Intensity() (otslm.iter.objectives.Intensity method)


      	IterBase (class in otslm.iter)


  

  	
      	IterBase() (otslm.iter.IterBase method)


      	IterBaseEwald (class in otslm.iter)


      	IterBaseEwald() (otslm.iter.IterBaseEwald method)


      	IterCombine (class in otslm.iter)


      	IterCombine() (otslm.iter.IterCombine method)


      	iterPatternValueChanged() (in module otslm.ui.support)


  





L


  	
      	Launcher (in module otslm.ui)


      	lensesAndPrisms() (in module otslm.tools)


      	lgmode() (in module otslm.simple)


      	linear() (in module otslm.simple)

      
        	(in module otslm.utils.calibration)


      


  

  	
      	linear3d() (in module otslm.simple)


      	linearised() (otslm.utils.LookupTable method)


      	linearValueRange() (otslm.utils.Showable method)


      	load() (otslm.utils.LookupTable static method)


      	LookupTable (class in otslm.utils)


      	LookupTable() (otslm.utils.LookupTable method)


  





M


  	
      	make_beam() (in module otslm.tools)


  

  	
      	mask_regions() (in module otslm.tools)


      	michelson() (in module otslm.utils.calibration)


  





O


  	
      	Objective (class in otslm.iter.objectives)


      	Objective() (otslm.iter.objectives.Objective method)


      	otslm.iter (module)


      	otslm.iter.objectives (module)


      	otslm.simple (module)


      	otslm.tools (module)


      	otslm.tools.prop (module)


      	otslm.ui.support (module)


  

  	
      	otslm.utils (module)


      	otslm.utils.calibration (module)


      	otslm.utils.imaging (module)


      	otslm.utils.RedTweezers (module)


      	Ott2Forward (class in otslm.tools.prop)


      	Ott2Forward() (otslm.tools.prop.Ott2Forward method)


      	OttForward (class in otslm.tools.prop)


      	OttForward() (otslm.tools.prop.OttForward method)


  





P


  	
      	parabolic() (in module otslm.simple)


      	phaseblur() (in module otslm.tools)


      	pinholes() (in module otslm.utils.calibration)


      	populateDeviceList() (in module otslm.ui.support)


      	PrismsAndLenses (class in otslm.utils.RedTweezers)


  

  	
      	PrismsAndLenses() (otslm.utils.RedTweezers.PrismsAndLenses method)


      	PrismsAndLensesSpot (class in otslm.utils.RedTweezers)


      	PrismsAndLensesSpot() (otslm.utils.RedTweezers.PrismsAndLensesSpot method)


      	propagate() (otslm.tools.prop.FftDebyeForward method)


      	Propagator (class in otslm.tools.prop)


  





R


  	
      	random() (in module otslm.simple)


      	readGlslFile() (otslm.utils.RedTweezers.RedTweezers static method)


      	RedTweezers (class in otslm.utils.RedTweezers)


      	RedTweezers() (otslm.utils.RedTweezers.RedTweezers method)


      	removeSpot() (otslm.utils.RedTweezers.PrismsAndLenses method)


  

  	
      	resample() (otslm.utils.LookupTable method)


      	RmsIntensity (class in otslm.iter.objectives)


      	RmsIntensity() (otslm.iter.objectives.RmsIntensity method)


      	RsForward (class in otslm.tools.prop)


      	RsForward() (otslm.tools.prop.RsForward method)


      	run() (otslm.iter.IterBase method)


  





S


  	
      	sample_region() (in module otslm.tools)


      	save() (otslm.utils.LookupTable method)


      	saveVariableToBase() (in module otslm.ui.support)


      	scan1d() (in module otslm.utils.imaging)


      	scan2d() (in module otslm.utils.imaging)


      	ScreenDevice (class in otslm.utils)


      	ScreenDevice() (otslm.utils.ScreenDevice method)


      	sendCommand() (otslm.utils.RedTweezers.RedTweezers method)


      	sendShader() (otslm.utils.RedTweezers.RedTweezers method)


      	sendTexture() (otslm.utils.RedTweezers.RedTweezers method)


      	sendUniform() (otslm.utils.RedTweezers.RedTweezers method)


      	show() (otslm.utils.Showable method)


      	Showable (class in otslm.utils)

      
        	(class in otslm.utils.RedTweezers)


      


      	Showable() (otslm.utils.RedTweezers.Showable method)

      
        	(otslm.utils.Showable method)


      


      	showComplex() (otslm.utils.Showable method)


      	showIndexed() (otslm.utils.Showable method)


      	showRaw() (otslm.utils.RedTweezers.Showable method)

      
        	(otslm.utils.ScreenDevice method)


      


      	simple() (otslm.tools.prop.Fft3Forward static method)

      
        	(otslm.tools.prop.Fft3Inverse static method)


        	(otslm.tools.prop.FftDebyeForward static method)


        	(otslm.tools.prop.FftEwaldForward static method)


        	(otslm.tools.prop.FftEwaldInverse static method)


        	(otslm.tools.prop.FftForward static method)


        	(otslm.tools.prop.FftInverse static method)


        	(otslm.tools.prop.Ott2Forward static method)


        	(otslm.tools.prop.OttForward static method)


        	(otslm.tools.prop.RsForward static method)


      


  

  	
      	simplePatternValueChanged() (in module otslm.ui.support)


      	simpleProp() (otslm.tools.prop.Fft3Forward static method)

      
        	(otslm.tools.prop.Fft3Inverse static method)


        	(otslm.tools.prop.FftDebyeForward static method)


        	(otslm.tools.prop.FftEwaldForward static method)


        	(otslm.tools.prop.FftEwaldInverse static method)


        	(otslm.tools.prop.FftForward static method)


        	(otslm.tools.prop.FftInverse static method)


        	(otslm.tools.prop.Ott2Forward static method)


        	(otslm.tools.prop.OttForward static method)


        	(otslm.tools.prop.RsForward static method)


      


      	simpleTemperatureFcn() (otslm.iter.SimulatedAnnealing static method)


      	SimulatedAnnealing (class in otslm.iter)


      	SimulatedAnnealing() (otslm.iter.SimulatedAnnealing method)


      	sinc() (in module otslm.simple)


      	sinusoid() (in module otslm.simple)


      	smichelson() (in module otslm.utils.calibration)


      	sorted() (otslm.utils.LookupTable method)


      	spatial_filter() (in module otslm.tools)


      	spherical() (in module otslm.simple)


      	step() (in module otslm.simple)

      
        	(in module otslm.utils.calibration)


      


      	stopIterations() (otslm.iter.IterBase method)


  





T


  	
      	TestDmd (class in otslm.utils)


      	TestDmd() (otslm.utils.TestDmd method)


      	TestFarfield (class in otslm.utils)


      	TestFarfield() (otslm.utils.TestFarfield method)


  

  	
      	TestMichelson (class in otslm.utils)


      	TestMichelson() (otslm.utils.TestMichelson method)


      	TestShowable (class in otslm.utils)


      	TestSlm (class in otslm.utils)


      	TestSlm() (otslm.utils.TestSlm method)


  





U


  	
      	updateAll() (otslm.utils.RedTweezers.PrismsAndLenses method)

      
        	(otslm.utils.RedTweezers.RedTweezers method)


      


  

  	
      	updateComplexDisplay() (in module otslm.ui.support)


      	updateIterDisplay() (in module otslm.ui.support)


      	updateSimpleDisplay() (in module otslm.ui.support)


  





V


  	
      	valueMinimised() (otslm.utils.LookupTable method)


      	valueRangeSize() (otslm.utils.Showable method)


      	view() (otslm.utils.Showable method)


      	Viewable (class in otslm.utils)


  

  	
      	viewComplex() (otslm.utils.Showable method)


      	viewIndexed() (otslm.utils.Showable method)


      	viewTarget() (otslm.utils.Viewable method)


      	visualise() (in module otslm.tools)


      	volume2hologram() (in module otslm.tools)


  





W


  	
      	WebcamCamera (class in otslm.utils)


  

  	
      	WebcamCamera() (otslm.utils.WebcamCamera method)


  





Z


  	
      	zernike() (in module otslm.simple)


  







          

      

      

    

  

    
      
          
            
  

	Test forward page

	Introduction
	License

	Contributing

	Contact us





	Getting Started
	Installation

	Exploring the toolbox with the GUI

	Using the toolbox functions





	Examples
	Simple Beams

	Advanced Beams

	Gratings and Lens LiveScript

	Using the GPU

	Accessing OTSLM from LabVIEW





	Packages
	simple Package

	iter Package

	tools Package

	utils Package

	ui Package











          

      

      

    

  

    
      
          
            
  
Test forward page





          

      

      

    

  _static/up.png





_static/up-pressed.png





_static/otslm_logo.png





_static/plus.png





_static/file.png





_static/minus.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to the OTSLM documentation!
        


        		
          Introduction
          
            		
              License
            


            		
              Contributing
            


            		
              Contact us
            


          


        


        		
          Getting Started
          
            		
              Installation
              
                		
                  Using a .mltbx file
                


                		
                  Using a .zip or cloning the repository
                


                		
                  Post installation
                


              


            


            		
              Exploring the toolbox with the GUI
            


            		
              Using the toolbox functions
            


          


        


        		
          Examples
          
            		
              Simple Beams
              
                		
                  Initial setup
                


                		
                  Exploring different simple beams
                


              


            


            		
              Advanced Beams
              
                		
                  Initial setup
                


                		
                  Amplitude control with a phase device
                


                		
                  Combining patterns
                


                		
                  Gerchberg-Saxton
                


                		
                  Creating patterns for the DMD
                


              


            


            		
              Gratings and Lens LiveScript
            


            		
              Using the GPU
              
                		
                  Using the GPU as a co-processor
                


                		
                  Uploading a shader to the GPU
                


              


            


            		
              Accessing OTSLM from LabVIEW
              
                		
                  Creating an otslm.simple function interface
                


                		
                  Calling a function with a cell array
                


                		
                  Creating an otslm class interface
                


                		
                  Building an application
                


              


            


          


        


        		
          Packages
          
            		
              simple Package
              
                		
                  Lens functions
                


                		
                  Beams
                


                		
                  Gratings
                


                		
                  Miscellaneous
                


                		
                  3-D functions
                


              


            


            		
              iter Package
              
                		
                  Iterative optimisation methods
                


                		
                  Objective functions
                


              


            


            		
              tools Package
              
                		
                  Functions
                


                		
                  prop sub-package
                


              


            


            		
              utils Package
              
                		
                  LookupTable
                


                		
                  imaging
                


                		
                  calibration
                


                		
                  RedTweezers
                


                		
                  Base classes of showable and viewable objects
                


                		
                  Physical devices
                


                		
                  Non-physical devices
                


              


            


            		
              ui Package
              
                		
                  Launcher
                


                		
                  Simple GUI overview
                


                		
                  Support sub-package
                


              


            


          


        


        		
          Documentation terms of use
        


      


    
  

_images/addNewVi.png
Py \:» e e Cy PR ) 0 piication.gcomp* * [
o>
e

=

1 Applicstion

New oW
Import fles i Clock-Driven Logic
B Add namespace

@ GType
Locste in Windows Bxplorer | gy Class (6 Type)
@ Resource Collection

&l Rename

[P Run-Time Menu
IP Extemal FPGA IP

Interface for MATLAB
I shared Library Interface
I NET Interfsce Document






_images/addSimpleVis.png
Project ltems

Software

otsim

simple

~linear

il tinear
spherical

§ spherical






_images/aberrationRiMismatch_example.png
-2.15

100

2.2
200
300 -2.25
400

2.3
500

100 200 300 400 500





_images/aperture_logicals.png
50

100

150

200

250

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1





_images/aperture_types.png
50
100
150
200
250

50
100
150
200
250

circle

50 100 150 200 250

ring

50 100 150 200 250

square

50
100
150
200

250
50 100 150 200 250

rect

50
100
150
200

250
50 100 150 200 250





_images/addingBeams.png
[ 1 |





_images/airy.png
100 200 300 400 500 20 40 60 80 100





_images/axicon.png
100 200 300 400 500 20 40 60 80 100





_images/axiconNearfield.png
20 20 20

40 ® 40 @ :Z @

80

100
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100





_images/axicon_default.png
20 40 60 80 100 120





_images/cubic_default.png
20 40 60 80

100 120

E)

IS

~

°





_images/dither_example.png
Threshold

50 50 50 50
100 100 100 100
150 150 150 150
200 200 200 200
250 250 250 250

50 150 250





_images/bessel.png
100

200

300

400

500 I
100 200 300 400 500 20 40 60 80 100





_images/checkerboard_default.png
{045

04

035

03

02

015

01

005





_images/frontPanelDiagram.png
&

Show display (B

F@ Pattern
<

Pattern Size
W
Display position @D """

Delete)

[ q—

Spot positons (20— |

St

i

fimatize)

@) err Output

o L

err toput






_images/frontPanelLayout.png
Pattern Size Pattern Show display

< 2 off/on
512 512|5 511 4 f/C
E -3 ;
Display position
Spot positions 3 =
- a a 1 YIS
105 105 105 ]
U'S U'S U'S 0
U'S U'S 'S El
'S 'S |5 ] 2
100
] 3
L e LA | -4
Stop 4 100 2000 - 300 - 400 511

X





_images/dmd.png
100
200
300

400 88

500

200 400 600 800

1000






_images/expSetup.png
wirror

Beam Spiitter

Camera





_images/generateImages.png
positions (@@ o7

{8 Intensity Graph

-2 1mage array
) error out

error in
sz

%) [

page index





_images/generateImagesIcon.png
Image array

error out






_images/gaussian_sc2.png
20

40

60

80

100

20 40 60 80 100 120





_images/gs.png
100 200 300 400 500 50 100 150 200





_images/gui_dataflow.png
0 Cv Uses > lanc » Documents » Gitiup > otsm »

e 2| vame cutoear
5625

s

[0S

ot o

4

© Command window

o ey

s - Opecal Tweezers SLM Pati Generator

OTSLI s 2 seof Matia functons and raphical uernetac forgeneraing paters o phase ang
ampitue spatal lht moduatrs (SL15) such s the digéalmirorer devs (DMD) and Iu cysal ype
Geice The focusof s oobox i o paliers o oplcal tweezers ystems bt he same uncions can

e vsed o e orphase conol f b
e e for e graphical . p
Categry Aoptcaton oo o
Exanpies Cambme
Simole s I [Comerta grayscapaten . boary ptiem F
erave Encodetd

Frnaize
Unites MaskRegon

SompieRe

Veusise

Level

Workspace
Name - Value
owotbr 25625 st

mosioutinesr 1) |v.

0s/S

iEnatie Dispay Dispay [Rawpatem v.
Dispay Variaie

Update Dvice Devee v






_images/grating.png
100 200 300 400 500 50 100 150 200





_images/grid_default.png
10

20

30

40

10

20

30

40

10 20

10 20

30 40

10

10

=
10 0
2 o
30 10
a0

10 20 30 40

phi

10
20
30
2
40

10 20 30 40





_images/hgbeam1.png
100 200 300 400 500 20 40 60 80 100





_images/gui_launcher.png
(4 OTSLM Launcher - o X

otsim - Optical Tweezers SLM Pattern Generator

OTSLM is a set

of Matlab functions and graphical user interface for generating patterns for phase and

amplitude spatial light modulators (SLMs) such as the digital micromirror device (DMD) and liquid crystal type:
device. The focus of this toolbox is on pattemns for optical tweezers systems but the same functions can
probably be used in other applications where ampiitude or phase control of light is required.

This is the launcher for the graphical user interface. I you are using this inferface for the first fime we suggest

Category
Examples
Simple
Iterative
Tools
Utilities

HG mode -

LG mode Generates a random pattern

Application

1G mode
Linear
Random
Sinc
Sinusoid
Step
Zemike






_images/hgbeam.png
100 200 300 400 500





_images/lgbeam.png
100 200 300 400 500 20 40 60 80 100





_images/linear.png
N

100
200

300

400
500 \

100 200 300 400 500 20 40 60 80 100






_images/imaging.png
Incident illumination 15 %10 1D Scan 2D Raster Scan

100
200
300
400
500

05

B3 ®o s

100200300400500 O 20 40 60 2 4 6 8 10 12





_images/lensesAndPrisms_example.png
20 40 60 80 100





_images/linearItemPanel.png
Document

Numeic 2
M Floating-point v
Doutle 2






_images/linearRaw.png
100

200

300

400

500

100

200

300

400

500





_images/linearGviInterface.png
sz (@] ——
otslm.si - im
spacing (5> mple

{ centre P

centre ([EEEP— @) error out
error in |

!






_images/linearInterface.png
Add interface node

Openin MATLAB® | 100% ¥ | Editicon template

otslm.simple.linear

comsimpeiner o

== [ = [

~ otsimsimplelinear  [im] = otsim.simple.inear(sz spacing,centre strcentr.. Add parameter

n
=
g
v —TE—

centre D






_images/linear_mod.png
9

8

7

6

5

4

3

2





_images/phaseblur_example.png
phaseblur






_images/regionSampling.png





_images/screenDeviceMethods.png
callClassMethod

) callClassMethod

Name | Prottype | ety [
S T e T s
errame
methodrame
devce
gt e s
o o=
gt et
et et
i pe..
-
Re——
prescaes ——
> e e e
cessrame
methodname
- e e
cessrame
methodname
e
com clCissMethodyamame asname methadrame) s
errame
methodname






_images/random_output.png
Gaussian

5
10
15
20

5 10 15 20
[ ]

02 04 06 08






_images/redtweezersSplash.png
Uiy BNS
of Glasgow
= Besipie Hewsinian Sriting

(<) Richard Bowman 2012. Released under GPL If this program is useful to your
published work, please cite it! [DOI to be inserted when available]
'www.gla.ac.uk/schools/physics/research/groups/optics/research/opticaltweezers/





_images/simpleOverview.png
Size 256,256

Spacing 10 :
Angle (deg) oS
Offset U
Centre 1.1

0

0 02 r 06

Enable Display

Display Variable

["]Update Device Device

08

1






_images/sinc.png
100

200

300

400

500 {1
100 200 300 400 500 20 40 60 80 100





_images/screenPlacement.png
offset(2)

ScreenDevice

size(1)

size(2)

offset(1)

Display Edge

-offset(2)

ScreenDevice

size(1)

size(2)

-offset(1)

Display Edge






_images/simple.png
100
200
300
400
500
600 §
700
800
900

1000

200 400 600 800 1000





_images/sincRaw.png
100

200

300

400

500

100

200

300

400

500

08

06

04

02

0.2





_images/prismsAndLenses.png
Dedicated gratings and lenses

CPU
GPU
GPU + Gather
-60Hz

Evaluation time [s]
3

S
%

10°
10°

10
Number of traps





_images/smichelsonDemo.png
) [ Simulated Michelson Interferometer

SLM

SLM Name

size

Tt

ped Michelson calibration:
ped Michelson calibration.
ped Michelson calibration:
ped Michelson calibration:
ped Michelson calibration.
ped Michelson calibration:
ped Michelson calibration:
ped Michelson calibration:
ped Michelson calibration:
ped Michelson calibration.
ped Michelson calibration.
ped Michelson calibration:
ped Michelson calibration.
ped Michelson calibration:
ped Michelson calibration:
ped Michelson calibration.
ped Michelson calibration:
ped Michelson calibration:
ped Michelson calibration:
ped Michelson calibration:

517256
61/256

717256

81/256

°1/256

101/256
111/256
121/256
131/256
141/256
151/256
161/256
171/256
181/256
191/256
201/256
2117256
221/256
231/256
241/25¢

Show Preview

4 Calbration: Stoped Michelzon

Name
s

Camera

Step Angie
Siice Angle
Sice 1
Siice 2

Frequency

Delay

Stride

- o x
sm B
E—
=
=
Pown Specm
= = s
=) g
= = S
S
= Frequency
. Phase.Index
£
£ e
&
L o 3 -
Z
2 0
Random Test | Run 27 53 79 105 131 157 183 200 23

Linear Index






_images/spherical.png
100 200 300 400 500 20 40 60 80 100





_images/sinusoid_types.png
10

w0

10

1d

20

0

0

10

s

10

2dcart

0

0





_images/slider.png
Setup the incident beam

type =
suitch type
case "gaussian®
bean_width = 101 — 3
incident = otslm.simple.gaussian(sz, beam_width);






_images/step_default.png
04

03

02

01





_images/super.png
50 100 150 200





_images/spherical_default.png
0.5

0.5





_images/stepDemo.png
@) Simulated Farield Imaging

‘SLM Name.

Size

SLM Type

SLM

01

012

256,

256,

Name

sm

=
=

‘Step Angle
Slice Angle Power Spectrum
Eo
e —
=
- Phase-Index
e 3=
& 3
3
z m
2 0

Random Test

Run

1

27 53 79 105 131 157 183 209 235
Linear Index






_images/sinc_default.png
20

40

20

40

60

80

100

02





_images/sinusoid_default.png
08

5

08
10

o7
15 06
20 05
2 04
2 03

02
35

01
40

0 20 30 40





_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/down-pressed.png





_static/down.png





_images/zero.png
100 200 300 400 500






_static/ajax-loader.gif





_images/zernike_default.png
100 200 300 400 500

05





